Вторник , 19 Ноябрь 2024

Квантовая связность: Квантовая запутанность без путаницы — что это такое / Хабр

Содержание

Квантовая запутанность без путаницы — что это такое / Хабр

Введение


Появилось много популярных статей, где рассказывается о квантовой запутанности. Опыты с квантовой запутанностью весьма эффектны, но премиями не отмечены. Почему вот такие интересные для обывателя опыты не представляют интереса для учёных? Популярные статьи рассказывают об удивительных свойствах пар запутанных частиц — воздействие на одну приводит к мгновенному изменению состояния второй. И что же такое скрывается за термином «квантовая телепортация», о которой уже начали говорить, что она происходит со сверхсветовой скоростью. Давайте рассмотрим все это с точки зрения нормальной квантовой механики.

Что получается из квантовой механики


Квантовые частицы может находиться в двух типах состояний, согласно классическому учебнику Ландау и Лифшица — чистом и смешанном. Если частица не взаимодействует с другими квантовыми частицами, она описывается волновой функцией, зависящей только от её координат или импульсов — такое состояние называют чистым. В этом случае волновая функция подчиняется уравнению Шредингера. Возможен другой вариант — частица взаимодействует с другими квантовыми частицами. В этом случае волновая функция относится уже ко всей системе взаимодействующих частиц и зависит от всех их динамических переменных. Если мы интересуемся только одной частицей, то её состояние, как показал Ландау ещё 90 лет назад, можно описать матрицей или оператором плотности. Матрица плотности подчиняется уравнению, аналогичному уравнению Шредингера

где — матрица плотности, H — оператор Гамильтона, а скобки обозначают коммутатор.

Его вывел Ландау. Любые физические величины, относящиеся к данной частицы, можно выразить через матрицу плотности. Такое состояние называют смешанным. Если у нас есть система взаимодействующих частиц, то каждая из частиц находится в смешанном состоянии. Если частицы разлетелись на большие расстояния, и взаимодействие исчезло, их состояние все равно останется смешанным. Если же каждая из нескольких частиц находятся в чистом состоянии, то волновая функция такой системы есть произведение волновых функций каждой из частиц (если частицы различны. Для одинаковых частиц, бозонов или фермионов, надо составить симметричную или антисимметричную комбинацию см. [1], но об этом позже. Тождественность частиц, фермионы и бозоны – это уже релятивистская квантовая теория.

Запутанным состоянием пары частиц называется такое состояние, в котором имеется постоянная корреляция между физическими величинами, относящимися к разным частицам. Простой и наиболее часто распространенный пример — сохраняется некая суммарная физическая величина, например, полный спин или момент импульса пары. Пара частиц при этом находится в чистом состоянии, но каждая из частиц — в смешанном. Может показаться, что изменение состояния одной частицы сразу скажется на состоянии другой частицы. Даже если они разлетелись далеко и не взаимодействуют, Именно это высказывается в популярных статьях. Это явление уже окрестили квантовой телепортацией, Некоторые малограмотные журналисты даже утверждают, что изменение происходит мгновенно, то есть распространяется быстрее скорости света.

Рассмотрим это с точки зрения квантовой механики, Во-первых, любое воздействие или измерение, меняющее спин или момент импульса только одной частицы, сразу же нарушает закон сохранения суммарной характеристики. Соответствующий оператор не может коммутировать с полным спином или полным моментом импульса. Таким образом, нарушается первоначальная запутанность состояния пары частиц. Спин или момент второй частицы уже нельзя однозначно связать с таковым для первой. Можно рассмотреть эту проблему с другой стороны. После того, как взаимодействие между частицами исчезло, эволюция матрицы плотности каждый из частиц описывается своим уравнением, в которое динамические переменные другой частицы не входят. Поэтому воздействие на одну частицу не будет менять матрицу плотности другой.

Имеется даже теорема Эберхарда [2], которая утверждает, что взаимное влияние двух частиц невозможно обнаружить измерениями. Пусть имеется квантовая система, которая описывается матрицей плотности. И пусть эта система состоит из двух подсистем A и B. Теорема Эберхарда гласит, что никакое измерение наблюдаемых, связанных только с подсистемой A, не влияет на результат измерения любых наблюдаемых, которые связаны только с подсистемой B. Впрочем, доказательство теоремы использует гипотезу редукции волновой функции, которая не доказана ни теоретически, ни экспериментально. Но все эти рассуждения сделаны в рамках нерелятивистской квантовой механики и относятся к различным, не тождественным частицам.

Эти рассуждения не работают в релятивистской теории в случае пары одинаковых частиц. Еще раз напомню, что тождественность или неразличимость частиц – из релятивистской квантовой механики, где число частиц не сохраняется. Однако для медленных частиц мы можем использовать более простой аппарат нерелятивистской квантовой механики, просто учитывая неразличимость частиц. Тогда волновая функция пары должна быть симметричной (для бозонов) или антисимметричной (для фермионов) по отношению к перестановке частиц. Такое требование возникает в релятивистской теории, независимо от скоростей частиц. Именно это требование приводит к дальнодействующим корреляциям пары одинаковых частиц. В принципе протон с электроном тоже могут находиться в запутанном состоянии. Однако если они разойдутся на несколько десятков ангстрем, то взаимодействие с электромагнитными полями и другими частицами разрушит это состояние. Обменное взаимодействие (так называют это явление) действует на макроскопических расстояниях, как показывают эксперименты. Пара частиц, даже разойдясь на метры, остается неразличимой. Если вы проводите измерение, то вы точно не знаете, к какой частице относится измеряемая величина. Вы проводите измерения с парой частиц одновременно. Поэтому все эффектные эксперименты проводились именно с одинаковыми частицами – электронами и фотонами. Строго говоря, это не совсем то запутанное состояние, которое рассматривают в рамках нерелятивистской квантовой механики, но что-то похожее.

Рассмотрим простейший случай – пара одинаковых невзаимодействующих частиц. Если скорости малы, мы можем пользоваться нерелятивистской квантовой механикой с учетом симметрии волновой функции по отношению к перестановке частиц. Пусть волновая функция первой частицы , второй частицы — , где и — динамические переменные первой и второй частиц, в простейшем случае – просто координаты. Тогда волновая функция пары

Знаки + и – относятся к бозонам и фермионам. Предположим, что частицы находятся далеко друг от друга. Тогда локализованы в удаленных областях 1 и 2 соответственно, то есть вне этих областей они малы. Попробуем вычислить среднее значение какой-нибудь переменной первой частицы, например, координаты. Для простоты можно представить, что в волновые функции входят только координаты. Окажется, что среднее значение координат частицы 1 лежит МЕЖДУ областями 1 и 2, причем оно совпадает со средним значением для частицы 2. Это на самом деле естественно – частицы неразличимы, мы не можем знать, у какой частицы измеряются координаты. Вообще все средние значения у частиц 1 и 2 будут одинаковы. Это значит, что, перемещая область локализации частицы 1 (например, частица локализована внутри дефекта кристаллической решетки, и мы двигаем весь кристалл), мы воздействуем на частицу 2, хотя частицы не взаимодействуют в обычном смысле – через электромагнитное поле, например. Это простой пример релятивистской запутанности.

Никакой мгновенной передачи информации из-за этих корреляций между двумя частицами не происходит. Аппарат релятивистской квантовой теории изначально построен так, что события, находящиеся в пространстве-времени по разные стороны светового конуса, не могут влиять друг на друга. Проще говоря, никакой сигнал, никакое воздействие или возмущение не могут распространяться быстрее света. Обе частицы на самом деле являются состоянием одного поля, например, электрон-позитронного. Воздействуя на поле в одной точке (на частицу 1), мы создаем возмущение, которое распространяется подобно волнам на воде. В нерелятивистской квантовой механике скорость света считается бесконечно большой, оттого возникает иллюзия мгновенного изменения.

Ситуация, когда частицы, разнесенные на большие расстояния, остаются связанными в паре, кажется парадоксальной из-за классических представлений о частицах. Надо помнить, что реально существуют не частицы, а поля. То, что мы представляем, как частицы – просто состояния этих полей. Классическое представление о частицах совершенно непригодно в микромире. Сразу же возникают вопросы о размерах, форме, материале и структуре элементарных частиц. На самом деле ситуации, парадоксальные для классического мышления, возникают и с одной частицей. Например, в опыте Штерна-Герлаха атом водорода пролетает через неоднородное магнитное поле, направленное перпендикулярно скорости. Спином ядра можно пренебречь из-за малости ядерного магнетона, пусть изначально спин электрона направлен вдоль скорости.

Эволюцию волновой функции атома нетрудно рассчитать. Первоначальный локализованный волновой пакет расщепляется на два одинаковых, летящих симметрично под углом к первоначальному направлению. То есть атом, тяжелая частица, обычно рассматриваемая, как классическая с классической траекторией, расщепился на два волновых пакета, которые могут разлететься на вполне макроскопические расстояния. Заодно замечу – из расчета следует, что даже идеальный эксперимент Штерна-Герлаха не в состоянии измерить спин частицы.

Если детектор связывает атом водорода, например, химически, то «половинки» — два разлетевшихся волновых пакета, собираются в один. Как происходит такая локализация размазанной частицы – отдельно существующая теория, в которой я не разбираюсь. Желающие могут найти обширную литературу по этому вопросу.

Заключение


Возникает вопрос – в чем смысл многочисленных опытов по демонстрации корреляций между частицами на больших расстояниях? Кроме подтверждения квантовой механики, в которой давно уже ни один нормальный физик не сомневается, это эффектная демонстрация, производящая впечатление на публику и дилетантов-чиновников, выделяющих средства на науку (например, разработку квантовых линий связи спонсирует Газпромбанк). Для физики эти дорогостоящие демонстрации ничего не дают, хотя позволяют развивать технику эксперимента.

Литература
1. Ландау, Л. Д., Лифшиц, Е. М. Квантовая механика (нерелятивистская теория). — Издание 3-е, переработанное и дополненное. — М.: Наука, 1974. — 752 с. — («Теоретическая физика», том III).
2. Eberhard, P.H., “Bell’s theorem and the different concepts of nonlocality”, Nuovo Cimento 46B, 392-419 (1978)

квантовая запутанность / Научный хит

Около 100 лет назад ученые впервые задумались о природе некоторых необычных свойств света. Например, света, исходящего от газов, когда их нагревают в пробирке. Если посмотреть на этот свет сквозь призму, можно заметить кое-что необычное.
Не спектр, в котором цвета плавно переходят один в другой, отражаясь в хрустальном бокале, а отчетливые линии, цвета которых не смешиваются, как в радуге. Речь идет о вертикальных лучах света, похожих на карандаши – каждый своего цвета. Однако объяснить столь странное свойство света ученые не могли. Поиски ответов безуспешно продолжались, пока физик Нильс Бор в начале ХХ века не выдвинул самую невероятную и фантастическую гипотезу. Бор был убежден, что разгадка отчетливых линий кроется в самом сердце материи – структуре атома.
Если нагреть газ в пробирке и посмотреть на исходящий от него свет через призму, вы увидите непересекающиеся вертикальные линии

Фантастическая гипотеза

По мнению ученого атомы напоминают крошечные модели Солнечной системы, так как электроны вращаются вокруг ядра, подобно планетам. Но электроны, в отличие от планет, двигаются по одной определенной орбите и ни по какой другой. Бор утверждал, что когда атом нагревается, электроны приходят в движение и перескакивают с одной орбиты на другую. При этом, каждый скачок сопровождается выбросом энергии в форме света с определенной длиной волны. Вот откуда взялись те странные вертикальные линии и понятие «квантовый скачок».
В документальном фильме National Geographic о квантовой теории, физик Брайан Грин рассказывает об удивительных свойствах квантового скачка, которые заключаются в том, что электрон перемещается с одной орбиты сразу на другую, будто бы не пересекая пространство между ними. Как если бы Земля в одно мгновенье поменялась орбитами с Марсом или Юпитером. Бор считал, что из-за странных свойств электронов в атоме, они излучают энергию определенными, неделимыми порциями, которые называются кванты. Именно поэтому электроны могут двигаться строго по определенным орбитам и могут находиться либо в одной точке, либо в другой, но никак не посередине. В повседневной жизни мы не сталкиваемся ни с чем подобным.
Если бы бейсбольный мяч оказался в двух местах одновременно, мы могли бы поверить, что нас обманывает волшебник. Но в квантовой механике наличие частицы в двух местах одновременно – это именно то, что заставляет нас считать эксперимент истинным.

При нагреве атомов электроны начинают перескакивать с одной орбиты на другую
Каким бы невероятным ни казалось предположение Бора, физики довольно быстро нашли большое количество доказательств в пользу его теории – электроны действительно ведут себя по совершенно иным законам, нежели планеты Солнечной системы или шарики для пинг-понга. Открытие Бора и его коллег, однако, противоречило общеизвестным законам физики и вскоре привело к столкновению с идеями, высказанными Альбертом Эйнштейном.

Квантовая запутанность

Эйнштейн не мог смириться с неопределенностью Вселенной, вытекающей из квантовой механики. Физик считал, что объект существует не только когда за ним наблюдают (как утверждал Нильс Бор), но и все остальное время. Ученый писал: «Мне хочется верить, что Луна светит даже когда я на нее не смотрю». Сама мысль о том, что реальность Вселенной определяется когда мы открываем и закрываем глаза казалась ему немыслимой. По мнению Эйнштейна квантовой теории не хватало чего-то, что описало бы все свойства частиц, в том числе их местонахождение даже в тот момент, когда за ними не наблюдают. И в 1935 году Эйнштейну показалось, что он нашел слабое место квантовой механики. Это было невероятно странное явление, противоречащее всем логическим представлениям о Вселенной – квантовая запутанность.
Квантовая запутанность – это теоретическое предположение вытекающее из уравнений квантовой механики, согласно которому две частицы могут запутаться, если находятся довольно близко друг к другу. Их свойства при этом становятся взаимосвязанными. Но даже если разделить эти частицы и отправить в разные концы света, как предлагает квантовая механика, они все равно могут остаться запутанными и неразрывно связанными. Эйнштейну такая связь между частицами казалась невозможной, он так ее и назвал – «сверхъестественная связь на расстоянии». Ученый допускал, что запутанные частицы могут существовать, но считал, что никакой «сверхъестественной связи на расстоянии» нет. Напротив, все предопределено задолго до момента измерения.

Допустим, кто-то взял пару перчаток, разделил их и положил каждую в отдельный чемодан. Затем один чемодан отправили вам, а второй в Антарктиду. До того момента, пока чемоданы закрыты, вы не знаете, какая из перчаток там лежит. Но открыв чемодан и обнаружив в нем левую перчатку, мы со 100% уверенностью узнаем, что в чемодане в Антарктиде лежит правая перчатка, даже если в него никто не заглядывал

Нильс Бор, в свою очередь, полагался на уравнения, доказывающие, что частицы ведут себя как два колеса, которые могут мгновенно связать случайные результаты своего вращения, даже находясь на огромном расстоянии друг от друга. Так кто же прав?
Определить, действительно ли между запутанными частицами существует «сверхъестественная связь» как между вращающимися колесами, или же никакой связи нет и свойства частиц предопределены заранее, как в случае с парой перчаток, удалось физику Джону Белл. С помощью сложных математических вычислений Белл показал, что если сверхъестественной связи нет, то квантовая механика неверна. Однако физик-теоретик также доказал, что вопрос можно решить, построив машину, которая создавала и сравнивала бы много пар запутанных частиц.
Основываясь на инструкциях Белла физик, специалист по квантовой механике Джон Клаузер собрал машину, способную проделывать эту работу. Машина Клаузера могла измерять тысячи пар запутанных частиц и сравнивать их по очень многим параметрам. Полученные результаты заставили ученого думать, что он допустил ошибку. Вскоре французский физик Ален Аспе подобрался к самой сути спора Эйнштейна и Бора.


Ален Аспе – французский физик, специалист по квантовой оптике, теории скрытых параметров и квантовой запутанности

В опыте Аспе измерение одной частицы могло прямо повлиять на другую только в случае, если сигнал от первой частицы ко второй прошел бы со скоростью, превышающей скорость света. Что, как мы знаем, невозможно. Таким образом оставалось только одной объяснение – сверхъестественная связь. Более того, проведенные эксперименты доказали, что математическая основа квантовой механики верна.
Запутанность квантовых состояний – это реальность.
Выходит, квантовые частицы могут быть связаны несмотря на огромные расстояния, а измерение одной частицы действительно может повлиять на ее далекую пару, как если бы пространства между ними никогда не существовало. Но ответить на вопрос о том как работает эта связь сегодня не может никто.

Квантовая связь в действии — описание, особенности и интересные факты

Квантовая физика предлагает абсолютно новый способ защиты информации. Зачем он нужен, разве сейчас нельзя проложить защищенный канал связи? Безусловно, можно. Но уже созданы квантовые компьютеры, и в тот момент, когда они станут распространены повсеместно, современные алгоритмы шифрования будут бесполезны, так как эти мощные компьютеры смогут взламывать их за доли секунды. Квантовая связь позволяет шифровать информацию при помощи фотонов — элементарных частиц.

Такие компьютеры, получив доступ к квантовому каналу, так или иначе изменят настоящее состояние фотонов. И попытка получить информацию приведет к ее повреждению. Скорость передачи информации, конечно, ниже, по сравнению с другими, ныне существующими каналами, например, с телефонной связью. Но квантовая связь обеспечивает гораздо больший уровень секретности. Это, естественно, очень большой плюс. Особенно в современном мире, когда киберпреступность растет с каждым днем.

Квантовая связь для «чайников»

Когда-то голубиная почта была вытеснена телеграфом, в свою очередь, телеграф вытеснило радио. Конечно, оно сегодня, никуда не делось, но появились другие современные технологии. Всего десять лет назад Интернет не был распространен так, как сегодня и доступ к нему было получить достаточно сложно — приходилось ехать в интернет-клубы, покупать весьма дорогие карточки и т. д. Сегодня без Интернета мы не проживаем ни часа, и с нетерпением ждем 5G.

Но очередной новый стандарт связи не решит задачи, которые стоят сейчас перед организацией обмена данными при помощи Интернета, получения данных со спутников из поселений на других планетах и т. п. Все эти данные должны быть надежно защищены. А организовывать это можно при помощи так называемой квантовой запутанности.

Что же такое квантовая связь? Для «чайников» объясняют это явление как связь разных квантовых характеристик. Она сохраняется даже тогда, когда частицы разнесены друг от друга на большое расстояние. Зашифрованный и переданный при помощи квантовой запутанности ключ, не предоставит никакой ценной информации взломщикам, которые попытаются его перехватить. Все, что они получат — это другие цифры, так как состояние системы, при внешнем вмешательстве, будет изменено.

Но создать всемирную систему передачи данных не удавалось, так как уже через несколько десятков километров сигнал затухал. Спутник, запущенный в 2016 г., поможет реализовать схему квантовой передачи ключей на расстояния больше 7 тыс. км.

Первые успешные попытки использования новой связи

Самый первый протокол квантовой криптографии был получен в 1984 г. Сегодня эта технология успешно используется в банковской сфере. Известные компании предлагают созданные ими криптосистемы.

Квантовая линия связи осуществляется на стандартном оптоволоконном кабеле. В России первый защищенный канал был проложен между отделениями «Газпромабанка» в Новых Черемушках и на Коровьем валу. Общая длина равняется 30,6 км, ошибки при передаче ключа возникают, но их процент минимален — всего 5%.

Китай запустил спутник квантовой связи

Первый в мире подобный спутник был запущен в Китае. Ракета Long March-2D стартовала 16 августа 2016 г. с космодрома Цзю-Цюань. Спутник весом 600 кг будет 2 года летать по солнечно-синхронной орбите, высотой 310 миль (или 500 км) в рамках программы «Квантовые эксперименты в космическом масштабе». Период обращения аппарата вокруг Земли равняется полутора часам.

Спутник квантовой связи называется Micius, или «Мо-Цзы», в честь философа, который жил в V в.н.э. и, как принято считать, первым проводил оптические эксперименты. Ученые собираются изучить механизм квантовой запутанности и провести квантовую телепортацию между спутником и лабораторией в Тибете.

Последняя передает квантовое состояние частицы на заданное расстояние. Для реализации этого процесса нужна пара запутанных (иначе говоря, сцепленных) частиц, находящихся на расстоянии друг от друга. Согласно квантовой физике, они способны улавливать информацию о состоянии партнера, даже находясь далеко друг от друга. То есть можно оказывать воздействие на частицу, которая находится в далеком космосе, воздействуя на ее партнера, который находится рядом, в лаборатории.

Спутник будет создавать два запутанных фотона и отправлять их на Землю. Если опыт будет удачным, он ознаменует собой начало новой эры. Десятки подобных спутников смогут не только обеспечить повсеместное распространение квантового интернета, но и квантовую связь в космосе для будущих поселений на Марсе и на Луне.

Зачем нужны такие спутники

Но зачем вообще нужен спутник квантовой связи? Разве уже существующих обычных спутников не достаточно? Дело в том, что эти спутники не будут заменять обычные. Принцип квантовой связи состоит в кодировании и защите существующих обычных каналов передачи данных. С ее помощью, например, уже обеспечивалась безопасность во время проведения парламентских выборов в 2007 году в Швейцарии.

Некоммерческая исследовательская организация Баттельский мемориальный институт, проводит обмен информацией между отделениями в США (штат Огайо) и в Ирландии (Дублин) используя квантовую запутанность. Принцип ее основан на поведении фотонов — элементарных частиц света. С их помощью кодируется информация и отправляется адресату. Теоретически, даже самая аккуратная попытка вмешательства, оставит след. Квантовый ключ изменится сразу же, и хакер, предпринявший попытку, получит бессмысленный символьный набор. Поэтому все данные, которые будут передавать через эти каналы связи, невозможно перехватить или скопировать.

Спутник поможет ученым тестировать распределение ключа между наземными станциями и самим спутником.

Квантовая связь в Китае будет реализована благодаря оптоволоконным кабелям, общей протяженностью 2 тыс. км и объединяющих 4 города от Шанхая до Пекина. Серии фотонов бесконечно передаваться не могут, и чем больше расстояние между станциями, тем выше шанс того, что информация будет повреждена.

Пройдя какое-то расстояние, сигнал затухает, и ученым, для того чтобы поддерживать корректную передачу информации, нужен способ обновления сигнала спустя каждые 100 км. В кабелях это достигается с помощью проверенных узлов, в которых ключ анализируется, копируется новыми фотонами и идет дальше.

Немного истории

В 1984 г. Брассард Ж. из Монреальского университета и Беннет Ч. из IBM предположили, что фотоны можно использовать в криптографии для получения защищенного фундаментального канала. Ими была предложена простая схема квантового перераспределения шифровальных ключей, которая была названа ВВ84.

Схема эта использует квантовый канал, по которому информация между двумя пользователями передается в виде поляризованных квантовых состояний. Подслушивающий их хакер может попытаться измерить эти фотоны, но он не может это сделать, как сказано выше, не внеся в них искажения. В 1989 г. в Исследовательском центре IBM Брассард и Беннет создали первую в мире работающую квантово-криптографическую систему.

Из чего состоит квантово-оптическая криптографическая система (КОКС)

Основные теххарактеристики КОКС (коэффициент ошибок, скорость передачи данных и т.п.) определены параметрами образующих канал элементов, которые формируют, передают и измеряют квантовые состояния. Обычно КОКС состоит из приемной и передающей частей, которые связаны каналом передачи.

Источники излучения разделяются на 3 класса:

  • лазеры;
  • микролазеры;
  • светоизлучающие диоды.

Для передачи оптических сигналов в качестве среды используют волоконно-оптические светодиоды, объединенные в кабели разной конструкции.

Природа секретности квантовой связи

Переходя от сигналов, в которых передаваемая информация кодируется импульсами с тысячами фотонов, к сигналам, в которых на один импульс, в среднем, приходится их меньше единицы, в действие вступают квантовые законы. Именно использование этих законов с классической криптографией позволяет достигать секретности.

Принцип неопределенности Гейзенберга применяется в квантово-криптографических аппаратах и благодаря ему любые попытки изменения в квантовой системе вносят в нее изменения, и формация, полученная в результате подобного измерения, определяется принимаемой стороной как ложная.

Дает ли квантовая криптография 100% гарантию от взлома?

Теоретически дает, но технические решения не совсем надежны. Злоумышленники стали использовать лазерный луч, с помощью которого они ослепляют квантовые детекторы, после чего те перестают реагировать на квантовые свойства фотонов. Иногда используются многофотонные источники, и взломщики могут получать возможность пропускать один из них и измерять идентичные.

Квантовая связь: дальность растёт | Наука и жизнь

Российские исследователи разработали  принципиально новую систему квантовой связи для защищенного обмена данными на большое расстояние.

Исследователи из Санкт-Петербургского университета Информационных технологий, механики и оптики (ИТМО) создали систему квантовой связи для защищенной передачи данных на основе принципиально нового подхода. Система позволит передавать данные на расстояния более 250 километров, что не уступает самым современным зарубежным устройствам.  Результаты исследования  опубликованы в журнале Optics Express.

Экспериментальная установка квантовой криптографической системы.

Желание защитить информацию возникло одновременно с появлением письменности. Но в наше время, когда значительная часть коммерческой, технологической, да и просто личной информации передается в цифровом виде,  важность сохранения секретности возросла неимоверно. 

На сегодняшний день разработано большое число криптографических методов защиты информации. Однако традиционные шифры, основанные на математических методах, могут быть взломаны с использованием современных компьютерных технологий. Это лишь вопрос времени. На помощь может прийти квантовая криптография, обеспечивающая полную секретность передачи информации благодаря законам физики. Информация в квантовых системах связи передается одиночными фотонами, которые нельзя незаметно «похитить» или скопировать, поскольку любое воздействие на фотон изменяет его.

Проблема разработчиков квантовой связи  заключается в эффективной и надежной передаче фотона по оптоволоконной линии, так как по дороге на него может воздействовать множество факторов, которые приведут к его разрушению. Причем, чем длиннее линия связи, тем больше вероятность «поломки» фотона».

Исследователи из университета ИТМО создали систему квантовой связи на основе кодирования квантовой информации на так называемых боковых частотах. Этот принцип, предложенный в свое время сотрудником университета Юрием Мазуренко, заключается в передаче не одного синусоидального колебания с заданной частотой, а нескольких независимых волн с разными частотами (спектра). Кодирование в этом случае осуществляется не основной синусоидой, а параметрами вспомогательной синусоиды – ее частотой смены фазы, фазовым положением. Другими словами квантовая информация передается отстройкой дополнительных частот в спектре относительно центральной частоты. В линии связи могут существовать помехи, которые изменяют параметры передаваемых сигналов и приводят к ошибкам при приеме информации. При передаче информации сигналом только одной частоты невозможно узнать, связано ли его изменение с кодированием, осуществленным отправителем, или со случайной помехой на линии. Это не позволяет обнаружить ошибку. В новом методе все частоты спектра передаются единым импульсом, и при наличии помехи на линии связи все они изменятся синхронно, сохранив сдвиг, кодирующий информацию.

Такой подход дает много преимуществ. В частности, он  упрощает конструкцию устройства, обеспечивает высокую устойчивость к внешним воздействиям и большую пропускную способность канала связи. По скорости и дальности передачи информации разработанная система сопоставима с абсолютными рекордами в области квантовой коммуникации. Кроме того, данный метод способен обеспечить передачу в одном оптоволоконном кабеле большого числа потоков данных на разных частотах. Более того, такие потоки могут подаваться на существующие линии связи одновременно с традиционными сигналами. 

В дальнейшем разработчики собираются создать полноценную квантово-криптографическую систему связи и подготовить стандарты, которые позволят осуществить её внедрение.

По материалам Университета ИТМО 

Квантовая запутанность — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Ква́нтовая запу́танность[1][2] (см. раздел «Название явления в русскоязычных источниках») — квантовомеханическое явление, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми. Такая взаимозависимость сохраняется, даже если эти объекты разнесены в пространстве за пределы любых известных взаимодействий, что находится в логическом противоречии с принципом локальности. Например, можно получить пару фотонов, находящихся в запутанном состоянии, и тогда если при измерении спина первой частицы спиральность оказывается положительной, то спиральность второй всегда оказывается отрицательной, и наоборот.

История изучения

Спор Бора и Эйнштейна, ЭПР-Парадокс

На Пятом Сольвеевском конгрессе 1927 года одним из центров дискуссии стал спор Бора и Эйнштейна о принципах Копенгагенской интерпретации квантовой механики[3], которая, впрочем, ещё не имела этого названия, закрепившегося только в 50-е годы XX века[4]. Эйнштейн настаивал на сохранении в квантовой физике принципов детерминизма классической физики и на трактовке результатов измерения с точки зрения «несвязанного наблюдателя» (англ. «detached observer»). С другой стороны, Бор настаивал на принципиально недетерминированном (статистическом) характере квантовых явлений и на неустранимости эффекта влияния измерения на само состояние. Как квинтэссенция этих споров часто приводится диалог Эйнштейна с Бором: «— Бог не играет в кости. — Альберт, не указывай Богу, что ему делать.», а также саркастический вопрос Эйнштейна: «Вы действительно считаете, что Луна существует, только когда вы на неё смотрите?»[5]

В продолжение начавшихся споров в 1935 году Эйнштейн, Подольский и Розен сформулировали ЭПР-парадокс, который должен был показать неполноту предлагаемой модели квантовой механики. Их статья «Можно ли считать квантово-механическое описание физической реальности полным?» была опубликована в № 47 журнала «Physical Review»[6].

В ЭПР-парадоксе мысленно нарушался принцип неопределённости Гейзенберга: при наличии двух частиц, имеющих общее происхождение, можно измерить состояние одной частицы и по нему предсказать состояние другой, над которой измерение ещё не производилось. Анализируя в том же году подобные теоретически взаимозависимые системы, Шрёдингер назвал их «спутанными» (англ. entangled)[7]. Позднее англ. entangled и англ. entanglement стали общепринятыми терминами в англоязычных публикациях[8]. Следует отметить, что сам Шрёдингер считал частицы запутанными, только пока они физически взаимодействовали друг с другом. При удалении за пределы возможных взаимодействий запутанность исчезала[8]. То есть значение термина у Шрёдингера отличается от того, которое подразумевается в настоящее время.

Эйнштейн не рассматривал ЭПР-парадокс как описание какого-либо действительного физического феномена. Это была именно мысленная конструкция, созданная для демонстрации противоречий принципа неопределённости. В 1947 году в письме Максу Борну он назвал подобную связь между запутанными частицами «жутким дальнодействием» (нем. spukhafte Fernwirkung, англ. spooky action at a distance в переводе Борна)[9]:

Поэтому я не могу в это поверить, так как (эта) теория непримирима с принципом того, что физика должна отражать реальность во времени и пространстве, без (неких) жутких дальнодействий.

Оригинальный текст (нем.)  

Ich kann aber deshalb nicht ernsthaft daran glauben, weil die Theorie mit dem Grundsatz unvereinbar ist, dass die Physik eine Wirklichkeit in Zeit und Raum darstellen soll, ohne spukhafte Fernwirkungen.

— «Entangled systems: new directions in quantum physics»[10]

Уже в следующем номере «Physical Review» Бор опубликовал свой ответ в статье с таким же заголовком, как и у авторов парадокса[11]. Сторонники Бора посчитали его ответ удовлетворительным, а сам ЭПР-парадокс — вызванным неправильным пониманием сути «наблюдателя» в квантовой физике Эйнштейном и его сторонниками[8]. В целом большинство физиков просто устранилось от философских сложностей Копенгагенской интерпретации. Уравнение Шрёдингера работало, предсказания совпадали с результатами, и в рамках позитивизма этого было достаточно. Гриббин (англ.)русск. пишет по этому поводу[12]: «чтобы добраться из точки А в точку Б, водителю необязательно знать, что происходит под капотом его машины». Эпиграфом же к своей книге Гриббин поставил слова Фейнмана:

Думаю, я могу ответственно заявить, что никто не понимает квантовую механику. Если есть возможность, прекратите спрашивать себя «Да как же это возможно?» — так как вас занесёт в тупик, из которого ещё никто не выбирался.

Неравенства Белла, экспериментальные проверки неравенств

Такое состояние дел оказалось не слишком удачным для развития физической теории и практики. «Запутанность» и «жуткие дальнодействия» игнорировались почти 30 лет[8], пока ими не заинтересовался ирландский физик Джон Белл. Вдохновлённый идеями Бома[13] (Теория де Бройля — Бома), Белл продолжил анализ ЭПР-парадокса и в 1964 сформулировал свои неравенства[14][15]. Весьма упрощая математические и физические составляющие, можно сказать, что из работы Белла следовали две однозначно распознаваемые ситуации при статистических измерениях состояний запутанных частиц. Если состояния двух запутанных частиц определены в момент разделения, то должно выполняться одно неравенство Белла. Если состояния двух запутанных частиц неопределены до измерения состояния одной из них, то должно выполняться другое неравенство.

Неравенства Белла предоставили теоретическую базу для возможных физических экспериментов, однако по состоянию на 1964 год техническая база не позволяла ещё их поставить. Первые успешные эксперименты по проверке неравенств Белла были осуществлены Клаузером и Фридманом в 1972 году[16]. Из результатов следовала неопределённость состояния пары запутанных частиц до проведения измерения над одной из них. И всё же до 80-х годов XX века квантовая сцепленность рассматривалась большинством физиков «не как новый неклассический ресурс, который можно использовать, а скорее как конфуз, ждущий окончательного разъяснения»[8].

Однако за экспериментами группы Клаузера последовали эксперименты Аспэ в 1981 году[16]. В классическом эксперименте Аспэ (см. схему) два потока фотонов с нулевым суммарным спином, вылетавшие из источника S, направлялись на призмы Николя a и b. В них за счёт двойного лучепреломления происходило разделение поляризаций каждого из фотонов на элементарные, после чего пучки направлялись на детекторы D+ и D-. Сигналы от детекторов через фотоумножители поступали в регистрирующее устройство R, где вычислялось неравенство Белла.

Результаты, полученные как в опытах Фридмана-Клаузера, так и в опытах Аспэ, чётко говорили в пользу отсутствия эйнштейновского локального реализма. «Жуткое дальнодействие» из мысленного эксперимента окончательно стало физической реальностью. Последний удар по локальности был нанесён в 1989 году многосвязными состояниями Гринбергера — Хорна — Цайлингера (англ.)русск.[17], заложившими базис квантовой телепортации. В 2010 году Джон Клаузер, Ален Аспе и Антон Цайлингер стали лауреатами премии Вольфа по физике «за фундаментальный концептуальный и экспериментальный вклад в основы квантовой физики, в частности за серию возрастающих по сложности проверок неравенств Белла (или расширенных версий этих неравенств) с использованием запутанных квантовых состояний»[18].

  • Лауреаты премии Вольфа по физике 2010 года
  • John Clauser conversing with Mike Nauenberg.jpg

    Джон Клаузер (слева)

  • Alain Aspect in Tel Aviv University.jpg

  • Anton-zeilinger-godany-porträt.jpg

    Антон Цайлингер

Современный этап

Современные версии описанного выше эксперимента создают сегменты Sa и Sb такой длины, чтобы регистрация фотонов происходила в заведомо не связанных известными взаимодействиями областях пространства-времени. В 2007 году исследователям из Мичиганского университета удалось разнести запутанные фотоны на рекордное в тот момент расстояние в 1 м[19][20].

В 2008 году группе швейцарских исследователей из Университета Женевы удалось разнести два потока запутанных фотонов на расстояние 18 километров. Помимо прочего, это позволило произвести временны́е измерения с недостижимой ранее точностью. В результате было установлено, что если некое скрытое взаимодействие и происходит, то скорость его распространения должна как минимум в 100 000 раз превышать скорость света в вакууме. При меньшей скорости временные задержки были бы замечены[21][22].

Летом того же года другой группе исследователей из австрийского Института квантовой оптики и квантовой информации (англ.)русск., включая Цайлингера, удалось поставить ещё более масштабный эксперимент, разнеся потоки запутанных фотонов на 144 километра, между лабораториями на островах Пальма и Тенерифе. Обработка и анализ столь масштабного эксперимента продолжаются, последняя версия отчёта была опубликована в 2010 году[23][24]. В данном эксперименте удалось исключить возможное влияние недостаточного расстояния между объектами в момент измерения и недостаточной свободы выбора настроек измерения. В результате были ещё раз подтверждены квантовая запутанность и, соответственно, нелокальная природа реальности. Правда, осталось третье возможное влияние — недостаточно полной выборки. Эксперимент, в котором все три потенциальных влияния будут исключены одновременно, на сентябрь 2011 года является вопросом будущего.

В большинстве экспериментов с запутанными частицами используются фотоны. Это объясняется относительной простотой получения запутанных фотонов и их передачи в детекторы, а также бинарной природой измеряемого состояния (положительная или отрицательная спиральность). Однако явление квантовой запутанности существует и для других частиц и их состояний. В 2010 году международный коллектив учёных из Франции, Германии и Испании получил и исследовал[25][26] запутанные квантовые состояния электронов, то есть частиц с массой, в твёрдом сверхпроводнике из углеродных нанотрубок. В 2011 году исследователям из Института квантовой оптики общества Макса Планка удалось создать состояние квантовой запутанности между отдельным атомом рубидия и конденсатом Бозе-Эйнштейна, разнесёнными на расстояние 30 м[27][28].

Название явления в русскоязычных источниках

При устойчивом английском термине Quantum entanglement, достаточно последовательно использующимся в англоязычных публикациях, русскоязычные работы демонстрируют широкое разнообразие узуса. Из встречающихся в источниках по теме терминов можно назвать (в алфавитном порядке):

  1. Запутанные квантовые состояния[29]
  2. Квантовая запутанность
  3. Квантовая зацепленность[30]
  4. Квантовые корреляции[31][32] (термин неудачен из-за неоднозначности[33][34])
  5. Квантовая нелокальность[35]
  6. Квантовая перепутанность[36]
  7. Несепарабельность[37] (как уточнение к «квантовым корреляциям»)
  8. Квантовая сцепленность[1]

В популярной прессе употребляется также выражение «квантовая спутанность»[38].

Такое разнообразие можно объяснить несколькими причинами, в том числе объективным наличием двух обозначаемых объектов: а) само состояние (англ. quantum entanglement) и б) наблюдаемые эффекты в этом состоянии (англ. spooky action at a distance), которые во многих русскоязычных работах различаются по контексту, а не терминологически.

Математическая формулировка

Получение запутанных квантовых состояний

В простейшем случае источником S потоков запутанных фотонов служит определённый нелинейный материал, на который направляется лазерный поток определённой частоты и интенсивности (схема с одним эмиттером)[39]. В результате спонтанного параметрического рассеяния (СПР) на выходе получаются два конуса поляризации H и V, несущие пары фотонов в запутанном квантовом состоянии (бифотоны)[40].

подробнее[41]
При СПР типа II под воздействием поляризованного лазерного излучения накачки в кристалле бета-бората бария спонтанно рождаются бифотоны, сумма частот которых равна частоте излучения накачки:

ω1 + ω2 = ω

а поляризации ортогональны в базисе, определяемом ориентацией кристалла. Благодаря двойному лучепреломлению, при определённых условиях фотоны имеют одну частоту и излучаются вдоль двух конусов, не имеющих общей оси. При этом в одном конусе поляризация вертикальная, а во втором — горизонтальная (по отношению к ориентации кристалла и поляризации излучения накачки). При СПР для волновых векторов также верно

<math>\vec{k_1} + \vec{k_2} = \vec{k}</math>

поэтому, если забирать один фотон бифотонной пары из одной линии пересечения конусов, то второй фотон можно всегда забрать из второй линии пересечения.

В кристалле фотоны разных поляризаций распространяются с разной скоростью, поэтому в реальной экспериментальной установке каждый пучок дополнительно пропускается через такой же кристалл половинной толщины, повёрнутый на 90°. Кроме того, для нивелирования поляризационных эффектов, в одном из пучков вертикальная и горизонтальная поляризации меняются местами при помощи комбинации полуволновой и четвертьволновой пластинок. Создаваемые в результате СПР члены бифотонной пары можно обозначить индексами 1 и 2, при этом:

  1. каждый фотон с равной вероятностью может находиться в одном из двух состояний поляризации <math>|x\rangle</math> или <math>|y\rangle</math>
  2. поляризации фотонов ортогональны,
  3. каждый фотон с равной вероятностью может попасть в пучок m или n — это мы назовём пространственным состоянием фотона — мода <math>|m\rangle</math> и мода <math>|n\rangle</math>

По аналогии с двухщелевым экспериментом два возможных варианта измерений поляризации (после поворота в одном из пучков поляризации одинаковы) можно описать суперпозицией произведений <math>|x\rangle_1|x\rangle_2</math> и <math>|y\rangle_1|y\rangle_2</math>, а возможные варианты измерения пространственных мод <math>|m\rangle_1|n\rangle_2</math> и <math>|n\rangle_1|m\rangle_2</math>.+\rangle_{12} = \frac{1}{\sqrt{2}}(|x\rangle_1|x\rangle_2 + |y\rangle_1|y\rangle_2)</math>

Выбор конкретного материала зависит от задач эксперимента, используемой частоты и мощности[42][43]. В таблице ниже приводятся лишь некоторые часто используемые неорганические нелинейные кристаллы с регулярной доменной структурой (англ.)русск.[44] (РДС-кристаллы, англ. periodically poled):

Интересным и сравнительно молодым направлением стали нелинейные кристаллы на органической основе[45][46]. Предполагалось, что органические составляющие живых организмов должны обладать сильными нелинейными свойствами из-за позиций орбиталей в π-связях. Эти предположения подтвердились, и несколькими группами исследователей были получены высококачественные нелинейные кристаллы путём дегидратации насыщенных растворов аминокислот. Некоторые из этих кристаллов:

LMMM из таблицы получается кристаллизацией смеси в пропорции два к одной L-метионина (метаболическое средство) и малеиновой кислоты (пищевая промышленность), то есть из массово производимых веществ. При этом эффективность правильно выращенного кристалла составляет 90 % от более дорогого и труднодоступного неорганического KTP[46].

Применение

«Сверхсветовой коммуникатор» Херберта

Всего через год после эксперимента Аспэ, в 1982 году, американский физик Ник Херберт (англ.)русск. предложил журналу «Foundations of Physics» статью с идеей своего «сверхсветового коммуникатора на основе нового типа квантовых измерений» FLASH (First Laser-Amplified Superluminal Hookup). По позднейшему рассказу Ашера Переса[47], бывшего в тот момент одним из рецензентов журнала, ошибочность идеи была очевидной, но, к своему удивлению, он не нашёл конкретной физической теоремы, на которую мог бы кратко сослаться. Поэтому он настоял на публикации статьи, так как это «пробудит заметный интерес, а нахождение ошибки приведёт к заметному прогрессу в нашем понимании физики». Статья была напечатана[48], и в результате развернувшейся дискуссии Вуттерсом, Зуреком (англ.)русск. и Диксом (англ.)русск. была сформулирована и доказана теорема о запрете клонирования. Так излагается история у Переса в его статье, опубликованной 20 лет спустя после описываемых событий.

Теорема о запрете клонирования утверждает невозможность создания идеальной копии произвольного неизвестного квантового состояния. Весьма упрощая ситуацию, можно привести пример с клонированием живых существ. Можно создать идеальную генетическую копию овцы, но нельзя «клонировать» жизнь и судьбу прототипа.

Учёные обычно скептически относятся к проектам со словом «сверхсветовой» в названии. К этому добавился неортодоксальный научный путь самого Херберта. В 1970-х он вместе с приятелем из Xerox PARC сконструировал «метафазовую печатную машинку» для «коммуникации с бесплотными духами»[49] (результаты интенсивных экспериментов были признаны участниками непоказательными). А в 1985 Херберт написал книгу о метафизическом в физике[50]. В целом, события 1982 года достаточно сильно скомпрометировали идеи квантовой коммуникации в глазах потенциальных исследователей, и до конца XX века существенного прогресса в этом направлении не наблюдалось.

Квантовая коммуникация

Теория квантовой механики запрещает передачу информации со сверхсветовой скоростью. Это объясняется принципиально вероятностным характером измерений и теоремой о запрете клонирования. Представим разнесённых в пространстве наблюдателей А и Б, у которых имеется по экземпляру квантово-запутанных ящиков с котами Шрёдингера, находящимися в суперпозиции «жив-мёртв». Если в момент t1 наблюдатель А открывает ящик, то его кот равновероятно оказывается либо живым, либо мёртвым. Если живым, то в момент t2 наблюдатель Б открывает свой ящик и находит там мёртвого кота. Проблема в том, что до исходного измерения нет возможности предсказать, у кого именно что окажется, а после один кот жив, другой мёртв, и назад ситуацию не повернуть.

Обход классических ограничений был найден в 2006 году А. Коротковым и Э. Джорданом[51] из Калифорнийского университета за счёт слабых квантовых измерений (англ. weak quantum measurement). Продолжая аналогию, оказалось, что можно не распахивать ящик, а лишь чуть-чуть приподнять его крышку и подсмотреть в щёлку. Если состояние кота неудовлетворительно, то крышку можно сразу захлопнуть и попробовать ещё раз. В 2008 году другая группа исследователей из Калифорнийского университета объявила об успешной экспериментальной проверке данной теории. «Реинкарнация» кота Шрёдингера стала возможной. Наблюдатель А теперь может приоткрывать и закрывать крышку ящика, пока не убедится, что у наблюдателя Б кот окажется в нужном состоянии.[52][53][54]

Открытие возможности «обратного коллапса» во многом перевернуло представления о базовых принципах квантовой механики:

Профессор Влатко Ведрал, Оксфордский университет: «Теперь мы даже не можем сказать, что измерения формируют реальность, — ведь можно элиминировать эффекты замеров и начать всё заново» Профессор Шлоссхауэр, университет Мельбурна: «Квантовый мир стал ещё более хрупким, а реальность ещё более таинственной».

— [www.membrana.ru/particle/1901 Реинкарнация кота Шрёдингера стала возможной]. [www.webcitation.org/65DRMBiIs Архивировано из первоисточника 5 февраля 2012].

Возникла идея не просто передачи потоков запутанных частиц в разнесённые в пространстве приёмники, но и хранения таких частиц неопределённо долгое время в приёмниках в состоянии суперпозиции для «последующего использования». Ещё из работ Раньяды 1990 года[55] было известно о таких расслоениях Хопфа, которые могли быть топологическими решениями уравнений Максвелла. В переводе на обычный язык это означало, что теоретически (математически) могут существовать ситуации, при которых пучок фотонов или отдельный фотон будет бесконечно циркулировать по сложной замкнутой траектории, выписывая тор в пространстве. До недавнего времени это оставалось про

Квантовая запутанность — королева парадоксов

Не так давно физики показали первые результаты работы миссии QUESS и запущенного в ее рамках на орбиту спутника Mozi, обеспечив рекордное разделение квантово запутанных фотонов расстоянием более 1200 км. В будущем это может привести к созданию квантовой линии связи между Пекином и Европой.

Мир вокруг велик и разнообразен – разнообразен настолько, что на одних масштабах проявляются законы, совершенно немыслимые для других. Законы политики и битломания никак не следуют из устройства атома – для их описания требуются свои «формулы» и свои принципы. Трудно представить, чтобы яблоко – макроскопический объект, поведение которого обычно следует законам ньютоновской механики, – взяло и исчезло, слилось с другим яблоком, превратившись в ананас.

А между тем именно такие парадоксальные феномены проявляются на уровне элементарных частиц. Узнав, что это яблоко красное, вряд ли мы сделаем зеленым другое, находящееся где-нибудь на орбите. А между тем именно так действует явление квантовой запутанности, и именно это продемонстрировали китайские физики, с работы которых мы начали наш разговор. Попробуем разобраться, что же это такое и чем может помочь человечеству.

Бор, Эйнштейн и другие

Мир вокруг локален – иначе говоря, для того чтобы какой-то далекий объект изменился, он должен провзаимодействовать с другим объектом. При этом никакое взаимодействие не может распространяться со скоростью быстрее световой: это и делает физическую реальность локальной. Яблоко не может шлепнуть Ньютона по голове, не добравшись до нее физически. Вспышка на Солнце не может мгновенно сказаться на работе спутников: заряженным частицам придется преодолеть расстояние до Земли и провзаимодействовать с электроникой и частицами атмосферы. Но вот в квантовом мире локальность нарушается.

Самым знаменитым из парадоксов мира элементарных частиц можно назвать принцип неопределенности Гейзенберга, согласно которому невозможно точно определить величину обеих «парных» характеристик квантовой системы. Положение в пространстве (координата) или скорость и направление движения (импульс), ток или напряжение, величина электрической или магнитной компоненты поля – все это «взаимодополняющие» параметры, и чем точнее мы измерим один из них, тем менее определенным станет второй.

Когда-то именно принцип неопределенности вызвал непонимание Эйнштейна и его знаменитое скептическое возражение

«Бог не играет в кости».

Однако, похоже, играет: все известные эксперименты, косвенные и прямые наблюдения и расчеты указывают, что принцип неопределенности является следствием фундаментальной недетерменированности нашего мира. И снова мы приходим к несочетанию масштабов и уровней реальности: там, где существуем мы, все вполне определенно: если разжать пальцы и отпустить яблоко, оно упадет, притянутое гравитацией Земли. Но на уровне более глубинном причин и следствий попросту нет, а существует лишь пляска вероятностей.

Парадоксальность квантово запутанного состояния частиц в том и состоит, что «удар по голове» может произойти ровно одновременно с отрывом яблока от ветки. Запутанность нелокальна, и изменение объекта в одном месте мгновенно – и без всякого очевидного взаимодействия – меняет другой объект совершенно в другом. Теоретически мы можем отнести одну из запутанных частиц хоть на другой конец Вселенной, но все равно стоит нам «коснуться» ее партнера, оставшегося на Земле, и вторая частица откликнется моментально. Самому Эйнштейну поверить в это было непросто, и спор его с Нильсом Бором и коллегами из «лагеря» квантовой механики стал одним из самых увлекательных сюжетов в современной истории науки.

«Реальность определенна, – как бы говорили Эйнштейн и его сторонники, – несовершенны лишь наши модели, уравнения и инструменты».

«Модели могут быть какими угодно, но сама реальность в основе нашего мира никогда не определена до конца», – возражали адепты квантовой механики.

Выступая против ее парадоксов, в 1935 г. Эйнштейн вместе с Борисом Подольским и Натаном Розеном сформулировал свой парадокс.

«Ну хорошо, – рассуждали они, – допустим, узнать одновременно координату и импульс частицы невозможно. Но что, если у нас есть две частицы общего происхождения, состояния которых идентичны? Тогда мы можем измерить импульс одной, что даст нам косвенным образом сведения об импульсе другой, и координату другой, что даст знание координаты первой».

Такие частицы были чисто умозрительной конструкцией, мысленным экспериментом – возможно, поэтому достойный ответ Нильсу Бору (а точнее, его последователям) удалось найти только 30 лет спустя.

Пожалуй, первый призрак квантово-механических парадоксов наблюдал еще Генрих Герц, заметивший, что если электроды разрядника осветить ультрафиолетом, то прохождение искры заметно облегчается. Эксперименты Столетова, Томсона и других великих физиков позволили понять, что происходит это благодаря тому, что под действием излучения вещество испускает электроны. Однако происходит это совершенно не так, как подсказывает логика; например, энергия высвободившихся электронов не будет выше, если мы увеличим интенсивность излучения, зато возрастет, если мы уменьшим его частоту. Увеличивая же эту частоту, мы придем к границе, за которой никакого фотоэффекта вещество не проявляет – этот уровень у разных веществ разный.

Объяснить эти феномены удалось Эйнштейну, за что он и был удостоен Нобелевской премии. Связаны они с квантованием энергии – с тем, что она может передаваться лишь определенными «микропорциями», квантами. Каждый фотон излучения несет определенную энергию, и если ее достаточно, то электрон поглотившего его атома вылетит на свободу. Энергия фотонов обратно пропорциональна длине волны, и при достижении границы фотоэффекта ее уже недостаточно даже для сообщения электрону минимально нужной для выхода энергии. Сегодня это явление встречается нам повсеместно – в виде солнечных батарей, фотоэлементы которых работают именно на основе этого эффекта.

Эксперименты, интерпретации, мистика

В середине 1960-х Джон Белл заинтересовался проблемой нелокальности в квантовой механике. Ему удалось предложить математическую основу для вполне осуществимого эксперимента, который должен заканчиваться одним из альтернативных результатов. Первый итог «срабатывал», если принцип локальности действительно нарушается, второй – если все-таки он действует всегда и нам придется искать какую-то другую теорию для описания мира частиц. Уже в начале 1970-х такие эксперименты были поставлены Стюартом Фридманом и Джоном Клаузером, а затем – Аленом Аспэном. Упрощенно говоря, задача состояла в создании пар спутанных фотонов и измерении их спинов, одного за другим. Статистические наблюдения показали, что спины оказываются не свободными, а скоррелированными друг с другом. Такие опыты проводятся с тех пор почти непрерывно, все более точные и совершенные – и результат один и тот же.

Стоит добавить, что механизм, объясняющий квантовую запутанность, неясен до сих пор, существует лишь явление – и различные интерпретации дают свои объяснения. Так, в многомировой интерпретации квантовой механики запутанные частицы – это лишь проекции возможных состояний одной-единственной частицы в других параллельных вселенных. В транзакционной интерпретации эти частицы связывают стоячие волны времени. Для «квантовых мистиков» феномен запутанности – еще один повод рассматривать парадоксальный базис мира как способ объяснения всему непонятному, от самих элементарных частиц до человеческого сознания. Мистиков можно понять: если вдуматься, то от последствий кружится голова.

Простой опыт Клаузера–Фридмана указывает на то, что локальность физического мира в масштабе элементарных частиц может нарушаться, и сама основа реальности оказывается – к ужасу Эйнштейна – расплывчатой и неопределенной. Это не значит, что взаимодействие или информация могут передаваться мгновенно, за счет запутанности. Разнесение запутанных частиц в пространстве идет с обычной скоростью, результаты измерения случайны, и пока мы не измерим одну частицу, вторая не будет содержать никакой информации о будущем результате. С точки зрения получателя второй частицы, результат совершенно случаен. Почему же все это нас интересует?

Как запутать частицы: возьмите кристалл с нелинейными оптическими свойствами – то есть такой, взаимодействие света с которым зависит от интенсивности этого света. Например, триборат лития, бета-борат бария, ниобат калия. Облучите его лазером подходящей длины волны – и высокоэнергетические фотоны лазерного излучения будут иногда распадаться на пары запутанных фотонов меньшей энергии (это явление называется «спонтанным параметрическим рассеянием») и поляризованных в перпендикулярных плоскостях. Остается удержать запутанные частицы в целости и разнести как можно дальше друг от друга.

Кажется, при разговоре о принципе неопределенности мы уронили яблоко? Поднимите его и бросьте об стену – разумеется, оно разобьется, ведь в макромире не работает еще один квантово-механический парадокс – туннелирование. При туннелировании частица способна преодолевать энергетический барьер более высокий, чем ее собственная энергия. Аналогия с яблоком и стеной, конечно, очень приблизительная, зато наглядная: туннельный эффект позволяет фотонам проникать внутрь отражающей среды, а электронам – «не замечать» тонкой пленки оксида алюминия, которая покрывает провода и вообще-то является диэлектриком.

Наша бытовая логика и законы классической физики к квантовым парадоксам не слишком-то приложимы, но они все равно работают и широко применяются в технике. Физики как будто (временно) решили: пусть мы пока не знаем до конца, как это работает, но пользу из этого можно извлечь уже сегодня. Туннельный эффект лежит в основе работы некоторых современных микрочипов – в виде туннельных диодов и транзисторов, туннельных переходов и т. д. И, конечно, нельзя забывать о сканирующих туннельных микроскопах, в которых туннелирование частиц обеспечивает наблюдение за отдельными молекулами и атомами – и даже манипуляцию ими.

Коммуникация, телепортация и спутник

В самом деле, давайте представим, что мы «квантово запутали» два яблока: если первое яблоко окажется красным, то второе обязательно зеленым, и наоборот. Мы можем отправить одно из Петербурга в Москву, сохранив их спутанное состояние, но это, казалось бы, все. Только когда в Петербурге яблоко будет измерено как красное, второе станет зеленым в Москве. До момента измерения возможности предсказать состояние яблока нет, потому что (все те же парадоксы!) самого определенного состояния они не имеют. Какой же в этом запутывании толк?.. А толк нашелся уже в 2000 х, когда Эндрю Джордан и Александр Коротков, опираясь на идеи советских физиков, нашли способ как бы «не до конца» измерять, а значит, и фиксировать состояния частиц.

Используя «слабые квантовые измерения», можно как бы взглянуть на яблоко вполглаза, мельком, стараясь угадать его цвет. Можно проделывать такое снова и снова, фактически не посмотрев на яблоко как следует, но вполне уверенно определиться с тем, что оно, например, красное, а значит, спутанное с ним яблоко в Москве будет зеленым. Это позволяет использовать спутанные частицы снова и снова, а предложенные около 10 лет назад методы позволяют хранить их, запустив бегать по кругу неопределенно долгое время. Остается унести одну из частиц подальше – и получить исключительно полезную систему.

Откровенно говоря, создается ощущение, что пользы в запутанных частицах куда больше, чем принято думать, просто наша скудная фантазия, скованная все тем же макроскопическим масштабом реальности, не позволяет придумать им настоящие применения. Впрочем, и уже существующие предложения вполне фантастичны. Так, на основе спутанных частиц можно организовать канал для квантовой телепортации, полного «считывания» квантового состояния одного объекта и «записи» его в другой, как если бы первый просто перенесся на соответствующее расстояние. Более реалистичны перспективы квантовой криптографии, алгоритмы которой обещают почти «невзламываемые» каналы связи: любое вмешательство в их работу скажется на состоянии запутанных частиц и будет тут же замечено владельцем. Тут-то на сцену и выходит китайский эксперимент QESS (Quantum Experiments at Space Scale – «Квантовые эксперименты в космическом масштабе»).

Компьютеры и спутники

Проблема в том, что на Земле трудно создать надежную связь для разнесенных на большое расстояние запутанных частиц. Даже в самом совершенном оптоволокне, по которому идет передача фотонов, сигнал постепенно затухает, а требования к нему здесь особенно высокие. Китайские ученые даже подсчитали, что если создавать запутанные фотоны и рассылать их в две стороны с плечами длиной около 600 км – по половине расстояния от центра квантовой науки в Дэлинхе до центров в Шэньчжэне и Лицзяне, – то можно рассчитывать поймать по спутанной паре примерно за 30 тыс. лет. Иное дело космос, в глубоком вакууме которого фотоны пролетают такое расстояние, не встречая каких-либо преград. И тут на сцену выходит экспериментальный спутник Mozi («Мо-Цзы»).

На космическом орбитальном аппарате установили источник (лазер и нелинейный кристалл), каждую секунду выдававший несколько миллионов пар запутанных фотонов. С дистанции от 500 до 1700 км одни эти фотоны направлялись в наземную обсерваторию в Дэлинхе на Тибете, а вторые – в Шэньчжэне и Лицзяне на юге Китая. Как и можно было ожидать, основные потери частиц происходили в нижних слоях атмосферы, однако это лишь около 10 км пути каждого пучка фотонов. В результате же канал запутанных частиц покрыл расстояние от Тибета до юга страны – около 1200 км, а в ноябре этого года была открыта новая линия, которая соединяет провинцию Аньхой на востоке с центральной провинцией Хубэй. Пока что каналу не хватает надежности, но это уже дело техники.

В ближайшее время китайцы планируют запуск более совершенных спутников для организации таких каналов и обещают, что уже скоро мы увидим действующую квантовую связь между Пекином и Брюсселем, фактически с одного конца континента до другого. Очередной «невозможный» парадокс квантовой механики обещает очередной скачок в технологиях.

Автор: Сергей Васильев

Связь

— Большая химическая энциклопедия

Обобщенный анализ Прони может извлекать из динамики ENDyne большое количество разнообразной информации, такой как колебательная энергия и частота для каждой нормальной моды. Классическая квантовая связь затем осуществляется через когерентные состояния, так что, скажем, каждая номинальная колебательная мода представлена ​​развивающимся состоянием … [Pg.240]

Д. Кляйн, в Теории Валентности Бонда, Д. Л. Купер, ред., Эльзевьер. , Амстердам, Нидерланды, 2002, стр.447-502. Теории резонирующей валентной связи для углеродных ir-сетей и классических / квантовых связей. [Pg.20]

Теории резонирующей валентности-связи для углеродных сетей и классических / квантовых связей … [Pg.447]

Эстрада, Э., Дельгадо, Э.Дж., Альдерете, Дж. Б. и Яна, Г. А. (2006) Дескрипторы квантовой связи в моделировании растворимости экологически важных органических соединений. /. Comput. Chem., 25, 1787-1796. [Стр.1033]

Когда речь идет о не первом соседе, но все еще высокие уровни, т.е.e., tm-n -n> 1 и j, 2 1, так что j = n A / t мы получаем классическую квантовую связь как … [Pg.25]

Затем мы вводим несколько новых определений степени вершины в контексте квантовой связи. Первый определяется как сумма порядков связи всех связей, которые инцидентны соответствующей вершине [52] … [Pg.25]

Индексы квантовой связности окончательно вычисляются с помощью выражения, аналогичного выражению индексов связности но с использованием взвешенных степеней вершин вместо простых [52, 53]… [Pg.26]

Индексы квантовой связности связей, основанные на взвешенных молекулярных графах, вычисляются аналогично их топологическим аналогам [59, 60]. Они определяются следующим образом [54] … [Pg.26]

Мы использовали индексы квантовой связи для моделирования растворимости ряда органических соединений, имеющих значение для окружающей среды. Этот набор данных сформирован … [Pg.26]

Рис. 1. График экспериментальных и прогнозируемых значений водной растворимости экологически значимых органических соединений в соответствии с моделью, разработанной с использованием индексов квантовой связи.
Рис. 2. Вклад ароматических колец двух полицилических ароматических углеводородов (ПАУ) в индекс квантовой связности CRg (p) (слева) и в растворимость в воде, выраженную в InC (справа). Соединение вверху представляет собой бензо [a] пирен, а соединение внизу — бенз [a] антрацен.
Кляйн, Д. Дж. Резонирующие теории валентных связей для углеродных jr-сетей и классических / квантовых связей.В теории Валентности Бонда, Купер, Д. Л., Ред. Теоретическая и вычислительная химия 10 Elsevier Amsterdam, 2002, стр. 447-502. [Pg.154]

Аппаратные решения и подключение устройств

Подключение медицинских устройств:

Для сокращения затрат на внедрение Health I.T. и для обеспечения беспрепятственной интеграции данных Spectrum Medical интегрировала в свою технологию квантовой информатики ведущее в мире решение для подключения медицинских устройств в рамках рабочей станции Quantum и приложения VISION Server, тем самым устраняя необходимость в стороннем поставщике решений для подключения.

Серверное приложение VISION может поддерживать прямое подключение к сторонним серверам шлюза (например, Philips или GE) или прямое подключение с помощью программного обеспечения Device Comms Management к ряду физиологических мониторов в I.C.U. без использования стороннего промежуточного программного обеспечения.

В медицинских учреждениях, где требуется создание ЭМИ с помощью программного обеспечения VIPER или для ряда процедур ECLS, требующих диагностического мониторинга, Quantum Workstation интегрирует собственное решение для подключения устройств.

Ключевые особенности решения для подключения устройств Quantum Informatics:

  • Положительная ассоциация пациента со всеми собранными данными.
  • Сбор данных со всех физиологических мониторов и вспомогательных устройств, расположенных в O.R. и I.C.U.
  • Решение Quantum Informatics для подключения устройств поддерживает передачу данных в режиме, близком к реальному времени, для удаленного анализа тенденций (LIVE VUE) и развертывание активных стратегий безопасности пациентов, разработанных клиницистами.
  • Варианты подключения, включая RS232 (Quantum Workstation), Wi-Fi и обычные проводные сети (Quantum Workstation и VISION Server).

Квантовая рабочая станция нового поколения, разработанная для клинических специальностей

Рабочая станция Quantum, использующая программное обеспечение VIPER «App-Store», представляет собой решение Spectrum Medical для клинического взаимодействия, интеграции устройств сторонних производителей, сбора данных и генерации EMR для ряда клинических специальностей, включая анестезию, перфузию и ECLS.

Изготовленная из медицинского алюминия с использованием новейших технологий емкостных сенсорных экранов, рабочая станция Quantum соответствует последним медицинским нормам и правилам безопасности и оснащена 15-дюймовым портретным экраном.

Quantum Tablet: гибкий, легкий и портативный

Работая как автономное решение или как дополнение к установке Quantum Workstation, Quantum Tablet добавляет мобильности и гибкости ведущей в мире технологии квантовой информатики Spectrum Medical.Использование идентификатора

Понимание квантовых вычислений — Microsoft Quantum

  • 5 минут на чтение

В этой статье

Квантовые вычисления используют принципы квантовой механики для обработки информации. Из-за этого квантовые вычисления требуют другого подхода, чем классические вычисления. Одним из примеров этого различия является процессор, используемый в квантовых компьютерах.В то время как классические компьютеры используют знакомые кремниевые чипы, квантовые компьютеры используют квантовые системы, такие как атомы, ионы, фотоны или электроны. Они используют свои квантовые свойства для представления битов, которые могут быть приготовлены в различных квантовых суперпозициях 1 и 0.

Квантовый материал ведет себя в соответствии с законами квантовой механики, используя такие концепции, как вероятностные вычисления, суперпозиция и запутанность. Эти концепции обеспечивают основу для квантовых алгоритмов, которые используют возможности квантовых вычислений для решения сложных проблем.В этой статье описаны некоторые из основных концепций квантовой механики, на которых основаны квантовые вычисления.

Квантовая механика с высоты птичьего полета

Квантовая механика, также называемая квантовой теорией, — это раздел физики, который имеет дело с частицами на атомном и субатомном уровнях. Однако на квантовом уровне многие законы механики, которые вы считаете само собой разумеющимися, неприменимы. Суперпозиция, квантовое измерение и запутанность — это три явления, которые являются центральными для квантовых вычислений.

Суперпозиция и двоичные вычисления

Представьте, что вы тренируетесь в своей гостиной. Вы поворачиваете полностью налево, а затем полностью направо. Теперь повернитесь одновременно налево и направо. Вы не можете этого сделать (по крайней мере, не разделившись надвое). Очевидно, вы не можете находиться в обоих этих состояниях одновременно — вы не можете смотреть влево и вправо одновременно.

Однако, если вы квантовая частица, то у вас может быть определенная вероятность , повернутого влево, И с определенной вероятностью , повернутого вправо, из-за явления, известного как суперпозиция (также известная как согласованность ).

Квантовая частица, такая как электрон, имеет свои собственные свойства «смотреть влево или вправо», например, спин , называемый либо вверх, либо вниз, или, чтобы сделать его более похожим на классические двоичные вычисления, скажем просто 1 или 0. Когда квантовая частица находится в состоянии суперпозиции, это линейная комбинация бесконечного числа состояний от 1 до 0, но вы не знаете, какое это будет, пока вы на самом деле не посмотрите на нее, что приводит к следующему явление, квантовое измерение .

Квантовое измерение

Теперь предположим, что ваш друг подходит и хочет сфотографировать вас, когда вы тренируетесь. Скорее всего, они получат размытое изображение того, как вы поворачиваетесь где-то между крайним левым и полным правым поворотом.

Но если вы квантовая частица, происходит интересная вещь. Независимо от того, где вы находитесь, когда они делают снимок, он всегда покажет вам либо полностью влево, либо полностью вправо — ничего промежуточного.

Это связано с тем, что акт наблюдения или измерения квантовой частицы коллапсирует состояние суперпозиции (также известное как декогеренция ), и частица принимает классическое бинарное состояние либо 1, либо 0.

Это двоичное состояние полезно для нас, потому что в вычислениях вы можете многое делать с помощью единиц и нулей. Однако после того, как квантовая частица была измерена и коллапсировала, она остается в этом состоянии навсегда (как на вашей картинке) и всегда будет иметь значение 1 или 0. Однако, как вы увидите позже, в квантовых вычислениях есть операции, которые могут «Сбросить» частицу обратно в состояние суперпозиции, чтобы ее снова можно было использовать для квантовых вычислений.

Запутывание

Возможно, наиболее интересным явлением квантовой механики является способность двух или более квантовых частиц сцепляться друг с другом .Когда частицы запутываются, они образуют единую систему, так что квантовое состояние любой одной частицы не может быть описано независимо от квантового состояния других частиц. Это означает, что любая операция или процесс, который вы применяете к одной частице, коррелирует и с другими частицами.

В дополнение к этой взаимозависимости, частицы могут поддерживать эту связь, даже будучи разделенными на невероятно большие расстояния, даже световые годы. Эффекты квантового измерения также применимы к запутанным частицам, так что, когда одна частица измеряется и коллапсирует, другая частица также коллапсирует.Поскольку между запутанными кубитами существует корреляция, измерение состояния одного кубита дает информацию о состоянии другого кубита — это конкретное свойство очень полезно в квантовых вычислениях.

Кубиты и вероятность

Классические компьютеры хранят и обрабатывают информацию в битах, которые могут иметь состояние 1 или 0, но не оба одновременно. Эквивалент в квантовых вычислениях — кубит , который представляет состояние квантовой частицы. Из-за суперпозиции кубиты могут иметь значение 1 или 0 или что-то среднее между ними.В зависимости от конфигурации кубит имеет определенную вероятность коллапса до 1 или 0. Вероятность коллапса кубита тем или иным способом определяется квантовой интерференцией .

Помните друга, который фотографировал вас? Предположим, в их камере есть специальные фильтры, называемые фильтрами Interference . Если они выберут фильтр 70/30 и начнут делать снимки, в 70% из них вы будете смотреть влево, а в 30% — вправо.Фильтр мешает нормальному состоянию камеры, чтобы повлиять на вероятность ее поведения.

Точно так же квантовая интерференция влияет на состояние кубита, чтобы повлиять на вероятность определенного результата во время измерения, и в этом вероятностном состоянии возможности квантовых вычислений превосходят.

Например, с двумя битами в классическом компьютере каждый бит может хранить 1 или 0, поэтому вместе вы можете сохранить четыре возможных значения — 00 , 01 , 10 и 11 — но только одно из те за раз.Однако с двумя кубитами в суперпозиции каждый кубит может иметь значение 1 или 0 или , оба , поэтому вы можете представлять одни и те же четыре значения одновременно. С тремя кубитами вы можете представить восемь значений, с четырьмя кубитами вы можете представить 16 значений и так далее.

Сводка

Эти концепции касаются лишь поверхности квантовой механики, но являются фундаментально важными концепциями, которые необходимо знать для квантовых вычислений.

  • Суперпозиция — Способность квантовых частиц быть комбинацией всех возможных состояний.
  • Квантовое измерение — Акт наблюдения квантовой частицы в суперпозиции, приводящей к одному из возможных состояний.
  • Entanglement — Способность квантовых частиц соотносить результаты своих измерений друг с другом.
  • Qubit — основная единица информации в квантовых вычислениях. Кубит представляет собой квантовую частицу в суперпозиции всех возможных состояний.
  • Интерференция — Собственное поведение кубита из-за суперпозиции, влияющее на вероятность его коллапса тем или иным образом.

Следующие шаги

Квантовые компьютеры и квантовые симуляторы

Откройте для себя линейку игровых гарнитур JBL | JBL Австралия

Активное шумоподавление

Активное шумоподавление

Активное шумоподавление

Активное шумоподавление

Активное шумоподавление

Активное шумоподавление

Активное шумоподавление

Активное шумоподавление

Объемный звук Плюс отслеживание головы

Объемный звук

Объемный звук

Объемный звук

Объемный звук

Объемный звук

Объемный звук

Объемный звук

Программное обеспечение для ПК для персонализации Есть

Программное обеспечение для ПК для персонализации Есть

Программное обеспечение для ПК для персонализации Есть

Программное обеспечение для ПК для персонализации Есть

Программное обеспечение для ПК для персонализации Есть

Программное обеспечение для ПК для персонализации

Программное обеспечение для ПК для персонализации

Программное обеспечение для ПК для персонализации

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *