Золотое сечение — что это такое? Числа Фибоначчи — это?
Здравствуйте, дорогие читатели!
Золотое сечение — что это такое? Числа Фибоначчи — это? В статье — ответы на эти вопросы кратно и понятно, простыми словами.
Эти вопросы вот уже несколько тысячелетий будоражат умы всё новых и новых поколений! Оказывается математика может быть не скучной, а захватывающей, интересной, завораживающей!
Другие полезные статьи: Квантовая физика и сознание человека В чем смысл жизни человека? Объясняет философ Виктор Франкл Как правильно жить? Мудрые советы древнегреческих философов Самопознание или как познать тайны мироздания?
СОДЕРЖАНИЕ СТАТЬИ:
Числа Фибоначчи — это что?
Поразителен тот факт, что при делении каждого последующего числа числовой последовательности на предыдущее
Обнаружил эту загадочную последовательность счастливчик математик средневековья Леонардо Пизанский (более известный под именем Фибоначчи). До него Леонардо да Винчи обнаружил в строении тела человека, растений и животных удивительным образом повторяющуюся пропорцию Фи = 1,618. Это число (1,61) ученые еще называют «Числом Бога».
До Леонардо да Винчи эта последовательность чисел была известна в Древней Индии и Древнем Египте. Египетские пирамиды построены с применением пропорции Фи = 1,618.
Но и это еще не все, оказывается законы природы Земли и Космоса каким-то необъяснимым образом подчиняются строгим математическим законам последовательности чисел Фидоначчи
.Например, и ракушка на Земле, и галактика в Космосе построены с применением чисел Фибоначчи. Абсолютное большинство цветов имеет 5, 8, 13 лепестков. В подсолнухе, на стеблях растений, в закрученных вихрях облаков, в водоворотах и даже в графиках изменения курсов валют на Форексе, всюду работают числа Фибоначчи.
Посмотрите простое и занимательное пояснение, что такое последовательность чисел Фибоначчи и Золотое сечение в этом КОРОТКОМ ВИДЕО (6 минут):
Что такое Золотое сечение или Божественная пропорция?
Итак, что такое Золотое сечение или Золотая или Божественная пропорция? Фибоначчи также обнаружил, что последовательность, которая состоит из квадратов чисел Фибоначчи является еще большей загадкой. Попробуем графически изобразить в виде площади последовательность:
1², 2², 3², 5², 8²…
Если вписать спираль в графическое изображение последовательности квадратов чисел Фибоначчи, то мы получим Золотое сечение, по правилам которого построено все во вселенной, включая растения, животных, спираль ДНК, человеческое тело, … Список этот можно продолжать до бесконечности.
Золотое сечение и Числа Фибоначчи в природе ВИДЕО
Предлагаю посмотреть короткий фильм (7 минут), в котором раскрываются некоторые загадки Золотого сечения. При размышлениях о законе чисел Фибоначчи, как о первостепенном законе, который управляет живой и неживой природой, появляется вопрос: Эта идеальная формула для макромира и микромира возникла сама или ее кто-то создал и удачно применил?
Что ВЫ думаете по этому поводу? Давайте вместе подумаем над этой загадкой и быть может мы приблизимся к тайне мироздания.
Очень надеюсь, что статья была полезной для Вас и Вы узнали, что это такое Золотое сечение *и Числа Фибоначчи? До новых встреч на страницах блога, подписывайтесь на блог. Форма подписки — под статьей.
Не могу не поделиться с Вами коротким документальным фильмом — ученые обнаружили загадочную связь между кодом ДНК и числом Бога.
Всем желаю много новых идей и вдохновения для их реализации!
Алёна Краева
SMARTБЛОГ
alenakraeva.com
Золотое сечение и пропорции Фибоначчи
Мы уже писали о 10 правилах композиции. Однако есть еще одно правило которое поможет вам улучшить ваши познания в работе с композицией.
Числа Фибоначчи — элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени итальянского математика средневековой Европы Леонардо Пизанского по прозвищу Фибоначчи, что обозначает «хороший сын родился».
Числа Фибоначчи так же называют золотым сечением. Не вдаваясь в математику, можно сказать лишь одно — изображения, которые согласуются с золотым сечением и числами Фибоначчи особенно благоприятны для человеческого глаза.
Многие фотографы и дизайнеры придерживаются пропорций 1:1.618 для построения более удачной композиции.
Эта последовательность была хорошо известна в Индии, где применялась в метрических науках. Позже многие исследователи начали замечать эту последовательность в природе и космосе.
Как на практике работать с композицией читайте в статье «9 советов по композиции от Стива Маккарри».
Следующие два видео и последующие за ним изображения помогут вам лучше понять как это работает на практике.
Ниже представлены фотографии, которые сделаны с применением пропорций Фибоначчи.
fototips.ru
🍀 Божественная гармония: что такое золотое сечение: пропорции и принципы
Эта гармония поражает своими масштабами…
Здравствуйте, друзья!
Вы что-нибудь слышали о Божественной гармонии или Золотом сечении? Задумывались ли о том, почему нам что-то кажется идеальным и красивым, а что-то отталкивает?
Если нет, то вы удачно попали на эту статью, потому что в ней мы обсудим золотое сечение, узнаем что это такое, как оно выглядит в природе и в человеке. Поговорим о его принципах, узнаем что такое ряд Фибоначчи и многое многое другое, включая понятие золотой прямоугольник и золотая спираль.
Да, в статье много изображений, формул, как-никак, золотое сечение — это еще и математика. Но все описано достаточно простым языком, наглядно. А еще, в конце статьи, вы узнаете, почему все так любят котиков =)
Что такое золотое сечение?
Если по-простому, то золотое сечение — это определенное правило пропорции, которое создает гармонию?. То есть, если мы не нарушаем правила этих пропорций, то у нас получается очень гармоничная композиция.
Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая ко всему целому.
Но, кроме этого, золотое сечение — это математика: у него есть конкретная формула и конкретное число. Многие математики, вообще, считают его формулой божественной гармонии, и называют «асимметричной симметрией».
До наших современников золотое сечение дошло со времен Древней Греции, однако, бытует мнение, что сами греки уже подсмотрели золотое сечение у египтян. Потому что многие произведения искусства Древнего Египта четко построены по канонам этой пропорции.
Золотое сечение в математике
Считается, что первым ввел понятие золотого сечения Пифагор. До наших дней дошли труды Евклида (он при помощи золотого сечения строил правильные пятиугольники, именно поэтому такой пятиугольник назван «золотым»), а число золотого сечения названо в честь древнегреческого архитектора Фидия. То есть, это у нас число «фи» (обозначается греческой буквой φ), и равно оно 1.6180339887498948482… Естественно, это значение округляют: φ = 1,618 или φ = 1,62, а в процентном соотношении золотое сечение выглядит, как 62% и 38%.
В чем же уникальность этой пропорции (а она, поверьте, есть)? Давайте для начала попробуем разобраться на примере отрезка. Итак, берем отрезок и делим его на неравные части таким образом, чтобы его меньшая часть относилась к большей, как большая ко всему целому. Понимаю, не очень пока ясно, что к чему, попробую проиллюстрировать наглядней на примере отрезков:
Итак, берем отрезок и делим его на два других, таким образом, чтобы меньший отрезок а, относился к большему отрезку b, так же, как и отрезок b относится к целому, то есть ко всей линии (a + b). Математически это выглядит так:
Этот правило работает бесконечно, вы можете делить отрезки сколь угодно долго. И, видите, как это просто. Главное один раз понять и все.
Но теперь рассмотрим более сложный пример, который попадается очень часто, так как золотое сечение еще представляют в виде золотого прямоугольника (соотношение сторон которого равно φ = 1,62). Это очень интересный прямоугольник: если от него «отрезать» квадрат, то мы снова получим золотой прямоугольник. И так бесконечно много раз. Смотрите:
Но математика не была бы математикой, если бы в ней не было формул. Так что, друзья, сейчас будет немножко «больно». Решение золотой пропорции спрятала под спойлер, очень много формул, но без них не хочу оставлять статью.
Ряд Фибоначчи и золотое сечение
Продолжаем творить и наблюдать за магией математики и золотого сечения. В средние века был такой товарищ — Фибоначчи (или Фибоначи, везде по-разному пишут). Любил математику и задачи, была у него и интересная задачка с размножением кроликов =) Но не в этом суть. Он открыл числовую последовательность, числа в ней так и зовутся «числа Фибоначчи».
Сама последовательность выглядит так:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233… и дальше до бесконечности.
Если словами, то последовательность Фибоначчи — это такая последовательность чисел, где каждое последующее число, равно сумме двух предыдущих.
Причем здесь золотое сечение? Сейчас увидите.
Спираль Фибоначчи
Чтобы увидеть и прочувствовать всю связь числового ряда Фибоначчи и золотого сечения, нужно снова взглянуть на формулы.
Иными словами, с 9-го члена последовательности Фибоначчи мы начинаем получать значения золотого сечения. И если визуализировать всю эту картину, то мы увидим, как последовательность Фибоначчи создает прямоугольники все ближе и ближе к золотому прямоугольнику. Вот такая вот связь.
Теперь поговорим о спирали Фибоначчи, ее еще называют «золотой спиралью».
Золотая спираль — логарифмическая спираль, коэффициент роста которой равен φ4, где φ — золотое сечение.
В общем и целом, с точки зрения математики, золотое сечение — идеальная пропорция. Но на этом ее чудеса только начинаются. Принципам золотого сечения подчинен почти весь мир, эту пропорцию создала сама природа. Даже эзотерики, и те, видят в ней числовую мощь. Но об этом точно не в этой статье будем говорить, поэтому, чтобы ничего не пропустить, можете подписаться на обновления сайта.
Золотое сечение в природе, человеке, искусстве
Прежде, чем мы начнем, хотелось бы уточнить ряд неточностей. Во-первых, само определение золотого сечения в данном контексте не совсем верно. Дело в том, что само понятие «сечение» — это термин геометрический, обозначающий всегда плоскость, но никак не последовательность чисел Фибоначчи.
И, во-вторых, числовой ряд и соотношение одного к другому, конечно, превратили в некий трафарет, который можно накладывать на все, что кажется подозрительным, и очень радоваться, когда есть совпадения, но все же, здравый смысл терять не стоит.
Однако, «все смешалось в нашем королевстве» и одно стало синонимом другого. Так что в общем и целом, смысл от этого не потерялся. А теперь к делу.
Вы удивитесь, но золотое сечение, точнее пропорции максимально приближенные к нему, можно увидеть практически везде, даже в зеркале. Не верите? Давайте с этого и начнем.
Пропорции золотого сечения в человеке
Знаете, когда я училась рисовать, то нам объясняли, как проще строить лицо человека, его тело и прочее. Все надо рассчитывать, относительно чего-то другого.
Все, абсолютно все пропорционально: кости, наши пальцы, ладони, расстояния на лице, расстояние вытянутых рук по отношению к телу и так далее. Но даже это не все, внутреннее строение нашего организма, даже оно, приравнивается или почти приравнивается к золотой формуле сечения. Вот какие расстояния и пропорции:
-
от плеч до макушки к размеру головы = 1:1.618
-
от пупка до макушки к отрезку от плеч до макушки = 1:1.618
-
от пупка до коленок и от коленок до ступней = 1:1.618
-
от подбородка до крайней точки верхней губы и от нее до носа = 1:1.618
Разве это не удивительно!? Гармония в чистом виде, как внутри, так и снаружи. И именно поэтому, на каком-то подсознательном что-ли уровне, некоторые люди не кажутся нам красивыми, даже если у них крепкое подтянутое тело, бархатная кожа, красивые волосы, глаза и прочее и все остальное. Но, все равно, малейшее нарушений пропорций тела, и внешность уже слегка «режет глаза».
Короче говоря, чем красивее кажется нам человек, тем ближе его пропорции к идеальным. И это, кстати, не только к человеческому телу можно отнести.
Золотое сечение в природе и ее явлениях
Классическим примером золотого сечения в природе является раковина моллюска Nautilus pompilius и аммонита. Но это далеко не все, есть еще много примеров:
-
в завитках человеческого уха мы можем увидеть золотую спираль;
-
ее же (или приближенную к ней) в спиралях, по которым закручиваются галактики;
-
и в молекуле ДНК;
-
по ряду Фибоначчи устроен центр подсолнуха, растут шишки, середина цветов, ананас и многие другие плоды.
Друзья, примеров настолько много, что я просто оставлю тут видеоролик (он чуть ниже), чтобы не перегружать текстом статью. Потому что, если эту тему копать, то можно углубиться в такие дебри: еще древние греки доказывали, что Вселенная и, вообще, все пространство, — спланировано по принципу золотого сечения.
Вы удивитесь, но эти правила можно отыскать даже в звуке. Смотрите:
-
Наивысшая точка звука, вызывающая боль и дискомфорт в наших ушах, равна 130 децибелам.
-
Делим пропорцией 130 на число золотого сечения φ = 1,62 и получаем 80 децибел — звук человеческого крика.
-
Продолжаем пропорционально делить и получаем, скажем так, нормальную громкость человеческой речи: 80 / φ = 50 децибел.
-
Ну, а последний звук, который получим благодаря формуле – приятный звук шепота = 2,618.
По данному принципу можно определить оптимально-комфортное, минимальное и максимальное число температуры, давления, влажности. Я не проверяла, и не знаю, насколько эта теория верна, но, согласитесь, звучит впечатляюще.
Абсолютно во всем живом и не живом можно прочесть высшую красоту и гармонию.
Главное, только не увлекаться этим, ведь если мы хотим что-то в чем-то увидеть, то увидим, даже если этого там нет. Вот я, например, обратила внимание на дизайн PS4 и увидела там золотое сечение =) Впрочем, эта консоль настолько классная, что не удивлюсь, если дизайнер, и правда, что-то там мудрил.
Золотое сечение в искусстве
Тоже очень большая и обширная тема, которую стоит рассмотреть отдельно. Тут лишь помечу несколько базовых моментов. Самое примечательное, что многие произведения искусства и архитектурные шедевры древности (и не только) сделаны, по принципам золотого сечения.
-
Египетские и пирамиды Майя, Нотр-дам де Пари, греческий Парфенон и так далее.
-
В музыкальных произведениях Моцарта, Шопена, Шуберта, Баха и прочих.
-
В живописи (там это наглядно видно): все самые знаменитые картины известных художников сделаны с учетом правил золотого сечения.
-
Эти принципы можно встретить и в стихах Пушкина, и в бюсте красавицы Нефертити.
-
Даже сейчас правила золотой пропорции используются, например, в фотографии. Ну, и конечно, во всем остальном искусстве, включая кинематограф и дизайн.
Золотые котики Фибоначчи
Ну и, наконец, о котиках! Вы задумывались о том, почему все так любят котеек? Они же ведь заполонили Интернет! Котики везде и это чудесно =)
А все дело в том, что кошки — идеальны! Не верите? Сейчас докажу вам это математически!
Видите? Тайна раскрыта! Котейки идеальны с точки зрения математики, природы и Вселенной =)
* Я шучу, конечно. Нет, кошки, действительно, идеальны) Но математически их никто не измерял, наверное.
На этом, в общем-то, все, друзья! Мы увидимся в следующих статьях. Удачи вам!
P. S. Изображения взяты с сайта medium.com.
pearative.ru
Золотое сечение и числа последовательности Фибоначчи.
Некоторое время назад я обещала прокомментировать утверждение Толкачева о том, что Питер построен по принципу Золотого Сечения, а Москва – по принципу симметрии, и что именно поэтому столь ощутимы различия в восприятии этих двух городов, и именно поэтому петербуржец, приезжая в Москву «заболевает головой», а москвич «заболевает головой», приезжая в Питер. Требуется некоторое время для сонастройки с городом (как при перелете в штаты – требуется сонастройка со временем).Дело в том, что наш глаз смотрит — ощупывая пространство с помощью определенных движений глаз – саккад (в переводе – хлопок паруса). Глаз совершает «хлопок» и посылает сигнал в мозг «сцепление с поверхностью произошло. Все в порядке. Информация такая-то». И в течение жизни глаз привыкает к определенной ритмике этих саккад. И когда эта ритмика кардинально меняется (с городского пейзажа на лес, с Золотого Сечения на симметрию) – тут то и требуется некоторая работа мозга по перенастройке.
Теперь подробности:
Определение ЗС — это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.
То есть, если мы примем весь отрезок c за 1, то отрезок a будет равен 0,618, отрезок b — 0,382. Таким образом, если взять строение, например, храм, построенный по принципу ЗС, то при его высоте скажем 10 метров, высота барабана с куполом будут равны 3,82 см, а высота основания строения будет 6, 18 см. (понятно, что цифры я взяла ровными для наглядности)
Далее можно рассчитать высоту двери, окон, креста. И везде будет просматриваться принцип ЗС.
А какова связь между ЗС и числами Фибоначчи?
Числа последовательности Фибоначчи это:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597…
Закономерность чисел в том, что каждое последующее число равно сумме двух предыдущих чисел.
0 + 1 = 1;
1 + 1 = 2;
2 + 3 = 5;
3 + 5 = 8;
5 + 8 = 13;
8 + 13 = 21 и т.д.,
а отношение смежных чисел приближается к отношению ЗС.
Так, 21 : 34 = 0,617, а 34 : 55 = 0,618.
То есть в основе ЗС лежат числа последовательности Фибоначчи.
Вот этот ролик ещё раз наглядно демонстрирует эту связь ЗС и чисел Фибоначчи
Где ещё встречаются принцип ЗС и числа последовательности Фибоначчи?
• Листья у растений описывается последовательностью Фибоначчи. Зерна подсолнуха, сосновые шишки, лепестки цветков, ячейки ананаса также располагаются согласно последовательности Фибоначчи.
• Яйцо птицы
• Длины фаланг пальцев человека относятся примерно как числа Фибоначчи. Золотое сечение просматривается в пропорциях лица.
• Эмиль Розенов исследовал ЗС в музыке эпохи Барокко и классицизма на примере произведений Баха, Моцарта, Бетховена.
• Известно, что Сергей Эйзенштейн искусственно построил фильм «Броненосец Потёмкин» по правилам ЗС. Он разбил ленту на пять частей. В первых трёх действие развивается на корабле. В двух последних — в Одессе, где разворачивается восстание. Этот переход в город происходит точно в точке золотого сечения. Да и в каждой части есть свой перелом, происходящий по закону золотого сечения. В кадре, сцене, эпизоде происходит некий скачок в развитии темы: сюжета, настроения. Эйзенштейн считал, что, так как такой переход близок к точке золотого сечения, он воспринимается как наиболее закономерный и естественный.
• Многие элементы декора, а так же шрифты, созданы с использованием ЗС. Например шрифт А.Дюрера (в рисунке буква «А»)
• Считается, что термин «Золотое сечение» ввел Леонардо Да Винчи, который говорил, «пусть никто, не будучи математиком, не дерзнет читать мои труды” и показывал пропорции человеческого тела на своём знаменитом рисунке «Витрувианский человек». “Если мы человеческую фигуру – самое совершенное творение Вселенной – перевяжем поясом и отмерим потом расстояние от пояса до ступней, то эта величина будет относиться к расстоянию от того же пояса до макушки, как весь рост человека к длине от пояса до ступней”.
Знаменитый портрет Моны Лизы или Джоконды (1503) создан по принципу золотых треугольников.
Собственно говоря сама звезда или пентакль представляет собой построение ЗС.
Ряд чисел Фибоначчи наглядно моделируется (материализуется) в форме спирали
А в природе спираль ЗС выглядит вот так:
При этом, спираль наблюдается повсеместно (в природе и не только):
— Семена в большинстве растений расположены по спирали
— Паук плетет паутину по спирали
— Спиралью закручивается ураган
— Испуганное стадо северных оленей разбегается по спирали.
— Молекула ДНK закручена двойной спиралью. Молекулу ДНК составляют две вертикально переплетенные спирали длиной 34 ангстрема и шириной 21 ангстрема. Числа 21 и 34 следуют друг за другом в последовательности Фибоначчи.
— Эмбрион развивается в форме спирали
— Спираль «улитки во внутреннем ухе»
— Вода уходит в слив по спирали
— Спиральная динамика показывает развитие личности человека и его ценностей по спирали.
— Ну и конечно, сама Галактика имеет форму спирали
Таким образом можно утверждать, что сама природа построена по принципу Золотого Сечения, оттого эта пропорция гармоничнее воспринимается человеческим глазом. Она не требует «исправления» или дополнения получаемой картинки мира.
Теперь о Золотом сечении в архитектуре
• Пирамида Хеопса представляет собой пропорции ЗС. (Фотография нравится – с заваленным песком Сфинксом).
• Согласно Ле Корбюзье, в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют золотому сечению. В фасаде древнегреческого храма Парфенона также присутствуют золотые пропорции.
Собор «Нотредам де Пари» в Париже, Франция.
Одно из выдающихся строений, выполненных по принципу ЗС – Смольный Собор в Питере. К собору ведут по краям две дорожки и если приближаться по ним к собору, то тот будто приподнимается в воздухе.
В Москве также есть строения выполненные с использованием ЗС. Например, Храм Василия Блаженного
Однако застройка, использующая принципы симметрии преобладает.
Например, Кремль и Спасская башня.
Высота стен Кремля также нигде не отражает принципа ЗС относительно высоты башен, например. Или взять гостиницу Россия, или гостиницу Космос.
При этом здания, построенные по принципу ЗС представляют больший процент в Питере, при этом это здания уличной застройки. Литейный проспект.
Таким образом, Золотое Сечение использует коэффицент 1,68, а симметрия 50/50.
То есть симметричные здания построены по принципу равенства сторон.
Ещё одной важной характеристикой ЗС является её динамичность и стремление к разворачиванию, за счет последовательности чисел Фибоначчи. Тогда как симметрия – наоборот представляет собой стабильность, устойчивость и неподвижность.
Кроме этого, дополнительное ЗС вносит в план Питера обилие водных пространств, расплескавшихся по городу и диктующих подчиненность города их изгибам. Да и сама схема Питера напоминает спираль или зародыш одновременно.
***
Папа, правда, высказал другую версию, отчего у москвичей и питерцев «голова болит» при посещении столиц. Папа относит это к энергиям городов:
Санкт-Петербург – имеет мужской род и соответственно мужские энергии,
Ну а Москва – соответственно – женского рода и обладает женскими энергиями.
Так жителям столиц, настроившимся на свой определенный баланс женского и мужского в своих организмах – сложно перестраиваться при посещении города-соседа, а у кого-то может и сложности какие-то имеются с восприятием одной или другой энергий и оттого город сосед могут и вовсе не любить!
В подтверждение этой версии говорит и то, что все российские императрицы правили именно в Питере, тогда как Москва видела лишь царей мужского пола!
Использованные ресурсы:
Последовательность Фибоначчи, проиллюстрированная природой.
Золотое сечение в живописи и архитектуре.
Золотое сечение и симметрия
Геометрия в архитектуре древнерусского творчества
vse-horosho.livejournal.com
Числа Фибоначчи,золотое сечение,последовательность Фибоначчи и Иллюминаты.: kamburina — LiveJournal
Леонардо Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов «Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.Определение
Числа Фибоначчи или Последовательность Фибоначчи — числовая последовательность, обладающая рядом свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений.
Последовательност Фибоначчи начинается так: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…
Свойства последовательности Фибоначчи
1. Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют (ФИ).
2. При делении каждого числа на следующее за ним, через одно получается число 0.382; наоборот – соответственно 2.618.
3. Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236.
Связь последовательности Фибоначчи и «золотого сечения»
Последовательность Фибоначчм асимптотически (пpиближаясь все медленнее и медленнее) стpемится к некотоpому постоянному соотношению. Однако, это соотношение иppационально, то есть пpедставляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифp в дpобной части. Его невозможно выразить точно.
Если какой-либо член последовательности Фибоначчи pазделить на пpедшествующий ему (напpимеp, 13:8), pезультатом будет величина, колеблющаяся около иppационального значения 1.61803398875… и чеpез pаз то пpевосходящая, то не достигающая его. Hо даже затpатив на это Вечность, невозможно узнать сотношение точно, до последней десятичной цифpы. Kpаткости pади, мы будем пpиводить его в виде 1.618. Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (сpедневековый математик) назвал его Божественной пpопоpцией. Cpеди его совpеменных названий есть такие, как Золотое сечение, Золотое сpеднее и oтношение веpтящихся квадpатов. Kеплеp назвал это соотношение одним из «сокpовищ геометpии». В алгебpе общепpинято его обозначение гpеческой буквой фи
Ф=1.618
Представим золотое сечение на примере отрезка.
Рассмотрим отрезок с концами A и B. Пусть точка С делит отрезок AB так что,
AC/CB = CB/AB или
AB/CB = CB/AC.
Представить это можно примерно так: A——C———B
Золотое сечение — это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.
Отрезки золотой пропорции выражаются бесконечной иррациональной дробью 0,618…, если AB принять за единицу, AC = 0,382.. Kак мы уже знаем числа 0.618 и 0.382 являются коэффициентами последовательности Фибоначчи.
Пропорции Фибоначчи и золотого сечения в природе и истории
Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи. Просто удивительно, сколько постоянных можно вычислить пpи помощи последовательности Фибоначчи, и как ее члены проявляются в огромном количестве сочетаний. Однако не будет преувеличением сказать, что это не просто игра с числами, а самое важное математическое выражение природных явлений из всех когда-либо открытых.
Пpиводимые ниже примеры показывают некоторые интересные приложения этой математической последовательности.
1. Pаковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Форма спирально завитой раковины привлекла внимание Архимеда. Дело в том, что отношение измерений завитков раковины постоянно и равно 1.618. Архимед изучал спираль раковин и вывел уравнение спирали. Cпираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.
2. Растения и животные. Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Cпираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Cовместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Cпиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль «кривой жизни».
Cреди придорожных трав растет ничем не примечательное растение — цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий — 38, четвертый — 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.
Ящерица живородящая. В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции — длина ее хвоста так относится к длине остального тела, как 62 к 38.
И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы — симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.
Пьер Kюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды. Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.
3. Космос. Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда (Фибоначчи) нашел закономерность и порядок в расстояниях между планетами солнечной системы
Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Cосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в.
Pяд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, и рукотворных сооружений, и строение Галактик. Эти факты — свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.
4. Пирамиды. Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скоpее неразрешимая головоломка из числовых комбинаций. Замечательные изобpетательность, мастерство, время и труд аpхитектоpов пирамиды, использованные ими пpи возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий. Kлюч к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.
Площадь тpеугольника
356 x 440 / 2 = 78320
Площадь квадpата
280 x 280 = 78400
Длина ребра основания пирамиды в Гизе равна 783.3 фута (238.7 м), высота пирамиды -484.4 фута (147.6 м). Длина ребра основания, деленная на высоту, приводит к соотношению Ф=1.618. Высота 484.4 фута соответствует 5813 дюймам (5-8-13) — это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618. Некоторые современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью — передать знания, которые они хотели сохранить для грядущих поколений. Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет центральную роль.
Пирамиды в Мексике. Hе только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения, то же самое явление обнаpужено и у мексиканских пиpамид. Возникает мысль, что как египетские, так и мексиканские пиpамиды были возведены пpиблизительно в одно вpемя людьми общего происхождения.
О последовательности Фибоначчи ордена Иллюминатов.
Это по сути, хранящийся в некогда секретных записях общества Иллюминатов, основанному в 1776 году профессором Адамом Вейсгауптом, последовательность чисел Фибоначчи, записанная в ряд:
58683436563811772030917
98057628621354486227052
60462818902449707207204
18939113748475408807538
68917521266338622235369
31793180060766726354433
38908659593958290563832
26613199282902678806752
08766892501711696207032
22104321626954862629631
36144381497587012203408
05887954454749246185695
36486444924104432077134
49470495658467885098743
39442212544877066478091
58846074998871240076521
70575179788341662562494
07589069704000281210427
62177111777805315317141
01170466659914669798731
76135600670874807101317
95236894275219484353056
78300228785699782977834
78458782289110976250030
26961561700250464338243
77648610283831268330372
42926752631165339247316
71112115881863851331620
38400522216579128667529
46549068113171599343235
97349498509040947621322
29810172610705961164562
99098162905552085247903
52406020172799747175342
77759277862561943208275
05131218156285512224809
39471234145170223735805
77278616008688382952304
59264787801788992199027
07769038953219681986151
43780314997411069260886
74296226757560523172777
52035361393621076738937
64556060605921658946675
95519004005559089502295
30942312482355212212415
44400647034056573479766
39723949499465845788730
39623090375033993856210
24236902513868041457799
56981224457471780341731
26453220416397232134044
44948730231541767689375
21030687378803441700939
54409627955898678723209
51242689355730970450959
56844017555198819218020
64052905518934947592600
73485228210108819464454
42223188913192946896220
02301443770269923007803
08526118075451928877050
21096842493627135925187
60777884665836150238913
49333312231053392321362
43192637289106705033992
82265263556209029798642
47275977256550861548754
35748264718141451270006
02389016207773224499435
30889990950168032811219
43204819643876758633147
98571911397815397807476
15077221175082694586393
20456520989698555678141
06968372884058746103378
10544439094368358358138
11311689938555769754841
49144534150912954070050
19477548616307542264172
93946803673198058618339
18328599130396072014455
95044977921207612478564
59161608370594987860069
70189409886400764436170
93341727091914336501371
57660114803814306262380
51432117348151005590134
56101180079050638142152
70930858809287570345050
78081454588199063361298
27981411745339273120809
28972792221329806429468
78242748740174505540677
87570832373109759151177
62978443284747908176518
09778726841611763250386
12112914368343767023503
71116330725869883258710
33632223810980901211019
89917684149175123313401
52733843837234500934786
04979294599158220125810
45982309255287212413704
36149102054718554961180
87642657651106054588147
56044317847985845397312
86301625448761148520217
06440411166076695059775
78325703951108782308271
06478939021115691039276
83845386333321565829659
77310343603232254574363
72041244064088826737584
33953679593123221343732
09957498894699565647360
07295999839128810319742
63125179714143201231127
95518947781726914158911
77991956481255800184550
65632952859859100090862
18029775637892599916499
46428193022293552346674
75932695165421402109136
30181947227078901220872
87361707348649998156255
47281137347987165695274
89008144384053274837813
78246691744422963491470
81570073525457070897726
75469343822619546861533
12095335792380146092735
10210119190218360675097
30895752895774681422954
33943854931553396303807
29169175846101460995055
06480367930414723657203
98600735507609023173125
01613204843583648177048
48181099160244252327167
21901893345963786087875
28701739359303013359011
23710239171265904702634
94028307668767436386513
27106280323174069317334
48234356453185058135310
85497333507599667787124
49058363675413289086240
63245639535721252426117
02780286560432349428373
01725574405837278267996
03173936401328762770124
36798311446436947670531
27249241047167001382478
31286565064934341803900
41017805339505877245866
55755229391582397084177
29833728231152569260929
95942240000560626678674
35792397245408481765197
34362652689448885527202
74778747335983536727761
40759171205132693448375
29916499809360246178442
67572776790019191907038
05220461232482391326104
32719168451230602362789
35454324617699757536890
41763650254785138246314
65833638337602357789926
72988632161858395903639
98183845827644912459809
37043055559613797343261
34830494949686810895356
96348281781288625364608
42033946538194419457142
66682371839491832370908
57485026656803989744066
21053603064002608171126
65995419936873160945722
88810920778822772036366
84481532561728411769097
92666655223846883113718
52991921631905201568631
22282071559987646842355
20592853717578076560503
67731309751912239738872
24682580571597445740484
29878073522159842667662
57807706201943040054255
01583125030175340941171
91019298903844725033298
80245014367968441694795
95453045910313811621870
45679978663661746059570
00344597011352518134600
65655352034788811741499
41274826415213556776394
03907103870881823380680
33500380468001748082205
91096844202644640218770
53401003180288166441530
91393948156403192822785
48241451050318882518997
00748622879421558957428
20216657062188090578088
05032467699129728721038
70736974064356674589202
58656573978560859566534
10703599783204463363464
85489497663885351045527
29824229069984885369682
80464597457626514343590
50938321243743333870516
65714900590710567024887
98580437181512610044038
14880407252440616429022
47822715272411208506578
88387124936351068063651
66743222327767755797399
27037623191470473239551
20607055039920884426037
08790843334261838413597
07816482955371432196118
95037977146300075559753
79570355227144931913217
25564401283091805045008
99218705121186069335731
53895935079030073672702
33141653204234015537414
42687154055116479611433
23024854404094069114561
39873026039518281680344
82525432673857590056043
20245372719291248645813
33441698529939135747869
89579864394980230471169
67157362283912018127312
91658995275991922031837
23568272793856373312654
79985912463275030060592
56745497943508811929505
68549325935531872914180
11364121874707526281068
69830135760524719445593
21955359610452830314883
91176930119658583431442
48948985655842508341094
29502771975833522442912
57364938075417113739243
76014350682987849327129
97512286881960498357751
58771780410697131966753
47719479226365190163397
71284739079336111191408
99830560336106098717178
30554354035608952929081
84641437139294378135604
82038947912574507707557
51030024207266290018090
42293424942590606661413
32287226980690145994511
99547801639915141261252
57282806643312616574693
88195106442167387180001
10042184830258091654338
37492364118388856468514
31500637319042951481469
42431460895254707203740
55669130692209908048194
52975110650464281054177
55259095187131888359147
65996041317960209415308
58553323877253803272763
29773721431279682167162
34421183201802881412747
44316884721845939278143
54740999990722332030592
62976611238327983316988
25393126200650370288447
82866694044730794710476
12558658375298623625099
98232335971550723383833
24408152577819336426263
04330265895817080045127
88731159355877472172564
94700051636672577153920
98409503274511215368730
09121996295227659131637
09396860727134269262315
47533043799331658110736
96431421719794340563915
51210810813626268885697
48068060116918941750272
29874158699179145349946
24441940121978586013736
60828690722365147713912
68742096651378756205918
54328888341742920901563
13328319357562208971376
56309785015631549824564
45865424792935722828750
60848145335135218172958
79329911710032476222052
19464510536245051298843
08713444395072442673514
62861799183233645983696
37632722575691597239543
83052086647474238151107
92734948369523964792689
93698324917999502789500
06045966131346336302494
99514808053290179029751
82515875049007435187983
51183603272277260171740
45355716588555782972910
61958193517105548257930
70910057635869901929721
79951687311755631444856
48100220014254540554292
73458837116020994794572
08237804368718944805636
89182580244499631878342
02749101533579107273362
53289069334741238022220
11626277119308544850295
41913200400999865566651
77566409536561978978183
80451030356510131589458
90287186108690589394713
68014845700183664956472
03294334374298946427412
55143590584348409195487
01523614031739139036164
40198455051049121169792
00120199960506994966403
03508636929039410070194
50532016234872763232732
44943963048089055425137
97233147518520709102506
36859816795304818100739
42453170023880475983432
34504142584314063612721
09602282423378228090279
76596077710849391517488
73168777135223900911711
73509186006546200990249
75852779254278165970383
49505801062615533369109
37846597710529750223173
07412177834418941184596
58610298018778742744563
86696612772450384586052
64151030408982577775447
41153320764075881677514
97553804711629667771005
87664615954967769270549
62393985709255070274069
97814084312496536307186
65337180605874224259816
53070525738345415770542
92162998114917508611311
76577317209561565647869
54744892713206080635457
79462414531066983742113
79816896382353330447788
31693397287289181036640
83269856988254438516675
86228993069643468489751
48408790396476042036102
06021717394470263487633
65439319522907738361673
89811781242483655781050
34169451563626043003665
74310847665487778012857
79236454185224472361713
74229255841593135612866
37167032807217155339264
63257306730639108541088
68085742838588280602303
34140855039097353872613
45119629264159952127893
11354431460152730902553
82710432596622674390374
55636122861390783194335
70590038148700898661315
39819585744233044197085
66967222931427307413848
82788975588860799738704
47020316683485694199096
54802982493198176579268
29855629723010682777235
16274078380743187782731
82119196952800516087915
72128826337968231272562
87000150018292975772999
35790949196407634428615
75713544427898383040454
70271019458004258202120
23445806303450336581472
18549203679989972935353
91968121331951653797453
99111494244451830338588
41290401817818821376006
65928494136775431745160
54093871103687152116404
05821934471204482775960
54169486453987832626954
80139150190389959313067
03186616706637196402569
28671388714663118919268
56826919952764579977182
78759460961617218868109
45465157886912241060981
41972686192554787899263
15359472922825080542516
90681401078179602188533
07623055638163164019224
54503257656739259976517
53080142716071430871886
28598360374650571342046
70083432754230277047793
31118366690323288530687
38799071359007403049074
59889513647687608678443
23824821893061757031956
38032308197193635672741
96438726258706154330729
63703812751517040600505
75948827238563451563905
26577104264594760405569
50959840888903762079956
63880178618559159441117
В самих записях членов этого секретного общества, данный набор цифр занимает очень важную роль. Но какую? Что скрывали Иллюминаты за этими цифрами?
Дело в том, что по сохранившимся данным Иллюминаты обладали обширными познаниями не только в области оккультных наук, но и математики, астрономии, астрологии, химии и алхимии, медицине и психологии. Также им были доступны некоторые древние источники знаний.
Многие исследователи считают что за этими цифрами может скрываться универсальный код жизни, рецепт филосовского камня и т.п…
kamburina.livejournal.com
Глава № 9. Фибоначчи, золотое сечение и пентакль. «Математика для мистиков. Тайны сакральной геометрии»
Последовательность Фибоначчи — не просто случайная числовая схема, придуманная этим итальянским математиком. Она является плодом осмысления пространственных отношений, имеющих место в природе и впоследствии получившими название золотое сечение.
На Западе числовая последовательность была исследована Леонардо Пизанским, известным как Фибоначчи (ок. 1170-ок. 1240 года н. э.). Происходивший из северной Африки, где его отец заведовал таможней — подсчет был их семейным делом — молодой Фибоначчи в дальнейшем обучался у арабских математиков, затем много путешествовал, всегда обращая внимание на способы записи чисел. Его работа «Liber abaci» («Книга абака», 1202 год н. э., на латыни) ознакомила европейцев с арабскими и индийскими математическими концепциями, включая десятичную систему и индо-арабские формы, которые мы теперь используем для записи чисел . Наряду с латинским переводом «Арифметики» аль-Хорезми, работа Фибоначчи способствовала формированию европейской математической мысли.
В последовательности Фибоначчи каждое новое число является суммой двух предыдущих. Итак, начнем считать с 0, то есть 0+1. Сложив их вместе, вы вновь получите 1, так что корректное начало последовательности будет выглядеть следующим образом: 0, 1, 1.
Новое число — 1 — плюсуется с предыдущим числом — 1 — ив последовательность добавляется число 2: 0, 1, 1, 2.
Сложение финального числа — 2 — с предшествующим — 1 — Дает число 3.
Таким же образом, каждое последнее число добавляется к предыдущему:
0, 1, 1, 2, 3 = 5
0, 1, 1, 2, 3, 5 = 8
0, 1, 1, 2, 3, 5, 8 = 13
Продолжая действовать в том же ключе, вы получите искомую последовательность Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584 и так до бесконечности.
litresp.ru
Числа Фибоначчи и Золотое сечение
ГОУ Гимназия №1505
«Московская городская педагогическая гимназия-лаборатория»
Реферат
Числа Фибоначчи и Золотое сечение
автор : ученик 9 класса «Б»
Азов Никита
Руководитель: Шалимова М.Н.
Москва
2012
Содержание
Введение ………………………………………………….……………2
Глава 1
История Чисел Фибоначчи.………………………………..……..5
Глава 2
Числа Фибоначчи как возвратная прогрессия……………………………………………………..……..12
Глава 3
Числа Фибоначчи и Золотое сечение………………………
Заключение …………………………………………………………16
Список литературы ………………………………………………………………….……..20
Введение.
Актуальность исследования. На мой взгляд в настоящие дни уделяется мало внимания математическим теоремам и фактам, известным из истории развития науки. На примере чисел Фибоначчи я хотел бы показать насколько они могут глобальны и широко применимы не только в математике, но и в повседневной жизни.
Целью моей работы является изучение истории, свойств, применения и связей чисел Фибоначчи с золотым сечением.
Глава 1. Числа Фибоначчи и их история.
Леонардо (1170-1250гг.) был рожден в Пизе. В последствии получил прозвище Фибоначчи, что означает «хорошо рожденный сын». Его отец торговал в арабских странах Северной Африки. Там Леонардо изучал математику с арабскими учителями, а также знакомился с достижениями индийских и древнегреческих ученых по трактатам в арабском переводе. Усвоив весь изучаемый им материал, он создал собственную книгу – «Книгу абака» (первое издание было написано в 1202 году, но до нас сохранилось только переиздание 1228 года). Таким образом, он стал первым средневековым выдающимся математиком, а также ознакомил Европу с арабскими цифрами и десятичной системой вычисления, которой мы пользуемся каждый день с ранних лет и до самой старости.«Книгу абака» можно разделить на пять частей по содержанию. Первые пять глав книги посвящены арифметике целых числе на основе десятичной нумерации. В 6-7 главе описаны действия над обыкновенными дробями. В 8-10 главе описаны приемы решения задач с помощью пропорций. В 11 главе рассматриваются задачи на смешение, в 12 главе речь идет о так называемых числах Фибоначчи. Далее описаны еще некоторые приемы с числами и приведены задачи на разные темы.
Основная задача поясняющая возникновение ряда чисел Фибоначчи – задача о кроликах. Вопрос задачи звучит так: «Сколько пар кроликов в один год рождается от одной пары?». К задаче дано пояснение, что пара кроликов через месяц рождает еще одну пару, а по природе кролики начинают рожать потомство на второй месяц после своего рождения. Автор дает нам решение задачи. Получается, что в первый месяц первая пара родит еще одну. Во второй первая пара родит еще одну – будет три пары. В 3-ий месяц родят две пары – изначально данная и рожденная в первый месяц. Получается 5 пар. И так далее, используя такую же логику в рассуждении мы получим, что в четвертый месяц будет 8 пар, в пятый 13, в шестой 21, в седьмлй 34, в в восьмой 55, в девятый 89, в дестый 144, в одиннадцатый 233, в двенадцатый 377.
[1]Мы можем обозначить кол-во кроликов в любой из двенадцати месяцев как un. Мы получаем ряд чисел:
u1 , u2 ,…,un[2] (1)
В ряде этих чисел каждый член равен сумме двух предыдущих. Получается, что любой член уравнения можно определить по уравнению:
un =un-1 +un-2[3] (2)
Рассмотрим важный частный случай для этого уравнения, когда u1 и u2 =1. Мы получим последовательность чисел 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377… Эту же последовательность чисел мы получали в задачу про кроликов. Эти числа названы числами Фибоначчи в честь автора.
Эти числа а также уравнение (2) обладает многими свойствами, который будут рассматриваться в моей работе.
Глава 2. Связь между рядом Чисел Фибоначчи и прогрессиями. Основные свойства ряда.
Для того, чтобы вывести основные свойства ряда возьмем как пример первые пять чисел: 1, 1, 2, 3, 5, 8. Мы видим, что каждое новое число равно сумме двух предыдущих. Отсюда мы можем вывести формулу получения любого числа ряда, а также формулу суммы любого кол-ва чисел из ряда.
Fn =Fn-1 +Fn-2[4] F1 +F2 …+Fn =Fn+2 -1[5]
Мы видим, что формулы кардинально отличаются от формул свойственных арифметической и геометрической прогрессий. А также мы можем сказать что только первые два числа из ряда могут относится к каким либо прогрессиям.
У арифметической и геометрических прогрессий имеются только две ранее упомянутые формулы, и чтобы посчитать например сумму четных, нечетных или сумму квадратов чисел каждый раз приходится решать задачу для отдельно взятого ряда. Но так как ряд чисел Фибоначчи является неизменным (не имеет шагов, знаменателей и различных первых членов прогрессии), то это значит, что для него можно вывести формулу получения сумм отдельных элементов ряда. Вот например формула для получения суммы чисел ряда под четными номерами:
F2 +F4 +…+F2n =F2n+1 -1[6]
Существует аналогичная формула для чисел из ряда под нечетными номерами:
F1 +F3 …+F2n-1 =F2n[7]
Также есть формула для получения суммы чисел из ряда возведенных в квадрат:
F2n +F2n+1 =F2n+1[8] F21 +F22 +F23 +…+F2n =Fn Fn+1[9]
У чисел Фибоначчи есть еще одно уникальное свойство, которое нехарактерно для для арифметической и геометрической прогрессий. Отношение ряда чисел (предыдущего к последующему) постоянно стремится к значению 0.618, аналогичная ситуация происходит при делении Fn на Fn+2 (отношение стремится к 0.382), при делении Fn на Fn+3 (отношение стремится к 0.236) и так далее. В итоге мы получили набор отношений. Набор их значений и значений обратных им называются фибоначчиевы коэффициенты. А значение обратное 0.618 – 1.618, является числом
(«фи»). Он также является одним из пары корней характерического для ряда многочлена x2 -x-1.Глава 3. Золотое сечение и числа Фибоначчи.
Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении) — деление непрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине. [10]
Попробуем объяснить это на примере бесконечной прямой. Примем всю прямую с за единицу. Разделим ее на две части a и b, которые делят прямую на отрезки равный по отношению к 1, как 0.618 и 0.382 соответственно. А эти числа являются одними из коэффициентов ряда чисел Фибоначчи. Мы получаем, что отношение больших частей этой прямой к меньшим асимптотически приближается к числу
.Существует две основные фигуры, в которых отражается принцип золотого сечения.
Золотое сечение было известно еще древним грекам. Архимед считается открывателем Архимедовой спирали. Её смысл состоит в том, что каждый новый завиток увеличивается в определенное число, и отношение этих завитков равно числу
.Вторая фигура – золотой треугольник. Это равнобедренный треугольник, в котором отношение боковых сторон к основанию равно
. На его основе построены такие фигуры как пентаграмма и пятиконечная звезда.Многие ученые и поэты обращали на то, что многое в природе напоминает спирали.
mirznanii.com