Понедельник , 27 Январь 2025

6 числа фибоначчи – Числа Фибоначчи — Википедия

Содержание

Фибоначчи — последовательность чисел — азбука трейдинга

Леонардо Пизанский, он же Фибоначчи и его уникальная, в своём роде, последовательность чисел, так же как и понятия «золотого сечения», «спираль Фибоначчи» или «число Бога», имеет непосредственное отношение к трейдингу, как к живой среде. На основе последовательности чисел трейдеры выстраивают уровни коррекции, расширения и иные.

Леонардо собственной персоной.

Фибоначчи – кто это?

                Леонардо Пизанский, больше известен по прозвищу Фибоначчи. Один из первых крупных математиков в средневековой Европе. Изучал искусство счёта в Алжире, Индии, Византии, Египте и ещё во многих странах Евразии и Африки. Его посмертный статус провозглашается как: «Пропагандист десятичной системы счисления и использования арабских цифр». Но в первую очередь, в нашем времени Фибоначчи запомнился нам как искусный математик. Сам он родился в Италии, в Пизанской республике и прожил 80 лет. Умер на родине, не оставив о своей биографии абсолютно ничего (все даты лишь предположения историков), за исключением отрывка второго абзаца книги «Абака». Даже портрет, знаменитого средневекового математика. Это лишь примерные наброски со слов историков.

Последовательность чисел Фибоначчи

                Дак какое же отношение Фибоначчи имеет применимо к трейдингу? Наберитесь терпения, дальше самое важное и интересное. Существует выражение, что математика «Царица всех наук». В ней присутствуют темы, с методами вычисления которых, можно раскрыть завесу тайн мировоздания. В мире есть закономерности и явления, которые, как не странно, можно объяснить  на языке математики.

                Главным  важнейшим трудом Фибоначчи, дошедших до наших дней, является последовательность чисел, при котором сумма следующего числа, получается путём сложением двух предыдущих чисел. В письменном виде это выглядит так:

0,1,1,2,3,5,8,13,21,34,55,89,144,…

0+1=1+1=2+1=3+2=5+3=8+5=13+8=21+13=34+21=55+34=89+55=144…

                Данная последовательность хорошо прослеживается в задачке от «Фибоначчи»: Есть два кролика, самец и самка. Условия таковы, что каждый месяц у них появляется на свет потомство, тоже самка и самец. На следующий месяц у этой пары появляется ещё одна пара кроликов. Теперь у нас получилось три пары кроликов. На следующий месяц, путём спаривания между собой в парах, у нас уже 5 пар кроликов. Задача состоит в том, чтобы вычислить, сколько будет кроликов, спустя 1 год. Ответ не так уж и сложен, даже без применения каких либо формул. Достаточно прибегнуть к числовой последовательности Фибоначчи, где одна единица любой цифры будет один кролик. А каждое сложение. Это будет прошествие одного месяца. На выходе мы получим 377 кроликов, если начать счисление от 1+1 (кролик + кролик).

«Золотое сечение» (1,618)

                Золотое сечение это пропорциональное соотношение чисел, при использовании которого в любой сфере жизнедеятельности, проявляется структуризация и гармония.

Но всё же, давайте не будем употреблять заучных слов и рассмотрим это явление простым языком. Для простоты восприятия, возьмём любое число из последовательности чисел Фибоначчи. Например, 13. Чтобы нам обнаружить число «золотого сечения», нам необходимо это число разделить на предыдущее в этом же ряду, то есть на 8. В ответе мы получим десятичную дробь 1,625. То есть это не цельное, не круглое число близкое к «золотому сечению».

1,625

Но если мы разделим 144 на 89, то мы получим цифру 1,6179775. Заметили разницу? Во втором примере итоговая цифра изменилась в меньшую сторону. Забегая вперёд, скажу, что чем выше мы будем брать число из последовательности чисел Фибоначчи, тем скорее и ближе будет стремиться итоговая цифра к значению 1,618 (не исключено отклонение как в плюс, так и в минус). К примеру, возьмём далёкое число 10 946 и разделим из этого ряда на предыдущее число 6 765. По итогу получим почти идеальную десятичную дробь 1,6180339. Попрошу вас взять в руки калькулятор и проверить данный пример.

Золотое сечение и трейдинг.

                Но какое же отношение, десятичная дробь 1,618 имеет к трейдингу? Потерпите немного, ведь не знание источников информации приводит к неверным интерпретациям будущих ситуаций на рынке. Понимаете, финансовый рынок, это живая среда. Это мы с вами. Для ясного, ну или примерного представления, приведу пример: Как известно из научных источников, насекомые, в частности пчёлы или муравьи, имеют один, общий инстинктивный «разум». И при строительстве своего муравейника, они не общаются, не обсуждают размер будущего дома, и не собираются вместе на обед. Но почему тогда у них получаются их логова в идеальном для них состоянии и в правильно расположенном месте? Да к тому же с меньшими входами/выходами со стороны севера? Всё потому же, что это инстинкт от природы ОДИН на всех. Ровно поэтому же и всемирный коллектив на FOREX, действует «сообща», «инстинктивным» разумом. Совершая всё те же ошибки, отдавая прибыль и преимущество единицам.

Простейший пример

                Теперь, зная точное (округлённое) число «золотого сечения». Мы с вами можем рассчитать практически любое соотношение. Снова забегая вперёд, оговорюсь; современный человеческий мозг, до сих пор не хочет воспринимать «идеальные» пропорции, как в природе, так и в архитектуре.

                Так в простейший пример можно привести «золотой прямоугольник». То есть прямоугольник с идеальным соотношением сторон. Ширина 754. Высота 466. При делении ширины на высоту, получим десятичную дробь «золотого сечения» 1,6180257. Я по праву не знаю (но догадываюсь) почему данное соотношение сторон не используется на экранах, при выпуске телевизоров или других гаджетов. Но всё же, некоторые устройства имеют приблизительную пропорцию сторон. Я же ссылаюсь на то, что современный человек ещё не пришёл к полной гармонии с «внутренней» природой.

Спираль Фибоначчи

                Весь наш мир в изобилие элементами «золотого сечения». Просто люди, которые далеки от этой темы, не в состоянии этого узреть. Сплошь и рядом прослеживается пропорция 1,618. Одним из важнейших элементов «золотого сечения» является спираль Фибоначчи. И вот те, кто разобрался с этой темой, и прочувствовали всю красоту и гармонию данного явления, несомненно, захотят построить спираль Фибоначчи собственными руками. Для этого нам потребуется циркуль обыкновенный и лист в клеточку. Обязательно в клеточку для того, чтобы можно было чертить аккуратные, правильные квадраты. Начать построение спирали нужно с двух нарисованных одинаковых квадратов, размером в одну клеточку, каждый. Начало спирали соединяет два противоположных угла этих квадратиков, лежащих на одной плоскости. Теперь важное условие; следующий квадрат, который соединяет два предыдущих, должен иметь стороны содержащие количество клеточек в сумме полученные путём сложения количеством клеток двух предыдущих квадратов. И каждый раз спираль (дуга) чертится на противоположный угол по диагонали. Да ребят, просто читая, я бы и сам запутался, для этого я и привёл ниже скриншот.

Спираль и ряд чисел Фибоначчи в природе

                Первозданный вид нашей вселенной, я бы даже сказал, нашего бытия, представлял собой абсолютный хаос. Частицы газа и пыли после «большого взрыва», с течением времени сформировали нашу планету. Но даже и с появлением тверди логичность структуризации не прослеживалась. Лишь спустя много миллионов лет, наша природа  преобразилась, и земля приобрела порядок. Все её царства – животные, растения, грибы (как отдельное царство), насекомые и человек, имеют отдельные элементы спирали Фибоначчи. Список можно продолжать: Вихри, спирали галактик, направления движения орбит планет и их естественных спутников, гребни цунами, спирали ДНК, ушная раковина человека, отпечатки пальцев, а так же молнии (последние имеют и элементы фрактала). Про ДНК же стоит поправиться, что в большей степени в ней присутствует последовательность чисел Фибоначчи, чем сама спираль. Скажу больше; спирали имеются не только у статических природных объектов, но и природных явлений, таких как завихрения, от взмаха крыльев стрекозы (кстати, единственное природное существо, которое имеет способность летать задом наперёд). Это так, к слову, дабы вы не соскучились. А так же, музыкальные такты, паузы, расположение октав, относительно их интервальному тону. Временные спирали, по которым происходят те или иные события. Так же временные периоды тесно связаны и с фрактальной структурой. Вобщем говоря, наш природный мир полностью и целиком приобрёл безграничную красоту и гармонию.

Последовательность ряда чисел Фибоначчи, «золотое сечение» и Спираль Фибоначчи в архитектуре

                Человек, как разумный Хомо сапиенс, тоже стремится к красоте, удобству, гармонии и оптимизации своих творений. Не правильным будет не признать гениальность архитекторов, воздвигнутых под их проектами сооружений. Которые можно описать с помощью математики. В частности все их элементы демонстрируют  ряд чисел Фибоначчи, «золотое сечение», либо Спираль Фибоначчи.

                Вообще в мире и в истории примеров наглядных уйма. Я же приведу в пример самый простенький. Христианский крест. Предположим мы взяли вертикальный элемент креста длинною, ну скажем 1000 см. Значит, горизонтальная перекладина должна быть 618 см. 1000/1,618=618. Далее располагаем её на уровне тоже 618 см. («золотое сечение» по длине стоявой балки), от верхнего края. Условие, что центр крепежа будет на обеих балках на расстоянии 618 см. В итоге мы получаем крест идеальной формы. И вот что удивительно, если вы из выше предложенного примера, правильно наложите спираль Фибоначчи на этот крест, то некоторые элементы совпадут.  Вы сможете это воссоздать сами на листе бумаги в клетку.

Подводя итоги

                На эту тему, примеров можно приводить бесчисленное количество. Но из пройденного материала, думаю, многие читатели поняли, почему ряд чисел Фибоначчи называют «числом Бога». Я же, подводя черту, желаю объяснить начинающим трейдерам, специализирующихся на техническом анализе, зачем так важно знать про последовательность чисел Фибоначчи. Рынок, будь то Forex или любая Биржевая площадка, это всегда живая среда. Инфраструктура похожая на природные явления. Это мы с вами. Коллективные действия, формирующие правила и элементы, так похожие на природные закономерности. К сожалению, в рамках этого материала, мне больше нечем вас удивить. Могу лишь посоветовать поинтересоваться этой темой на каналах в YouTube. Ролики с данным сюжетом, по истине, захватывает дух.

Эта статья – материал из рубрики “Азбука Трейдинга”. Загляните в неё. Там ещё много интересного!

Сложно? “Трейдинг для чайников” – бесплатное обучение рынкам.

Подпишитесь на наш телеграм канал и получите самую лучшую информацию.

xn—-dtbjkdrhdlujmd8i.xn--p1ai

Последовательность Фибоначчи — это… Что такое Последовательность Фибоначчи?

Чи́сла Фибона́ччи — элементы числовой последовательности

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597 … (последовательность A000045 в OEIS)

в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени средневекового математика Леонардо Пизанского (или Фибоначчи) [1].

Более формально, последовательность чисел Фибоначчи задается рекуррентным соотношением:

Иногда числа Фибоначчи рассматривают и для неположительных номеров n как двусторонне бесконечную последовательность, удовлетворяющую основному соотношению. Члены с такими номерами легко получить с помощью эквивалентной формулы «назад»: Fn = Fn + 2Fn + 1:

n−10−9−8−7−6−5−4−3−2−1012345678910
Fn−5534−2113−85−32−11011235813213455

Легко видеть, что F n = ( − 1)n + 1Fn. Для чисел Фибоначчи с отрицательными индексами остаются верными большинство нижеприведённых свойств.

Происхождение

Последовательность Фибоначчи была хорошо известна в древней Индии, где она применялась в метрических науках (просодии, другими словами — стихосложении), намного раньше, чем она стала известна в Европе.

Образец длиной n может быть построен путём добавления S к образцу длиной n-1, либо L к образцу длиной n-2; и просодицисты показали, что число образцов длиною n является суммой двух предыдущих чисел в последовательности. Дональд Кнут рассматривает этот эффект в книге «Искусство программирования».

На Западе эта последовательность была исследована Леонардо Пизанским, известным как Фибоначчи, в его труде «Liber Abaci» (1202). Он рассматривает развитие идеализированной (биологически нереальной) популяции кроликов, предполагая что:

  • В «нулевом» месяце, имеется пара кроликов (0 новых пар).
  • В первом месяце, первая пара производит на свет другую пару (1 новая пара).
  • Во втором месяце, обе пары кроликов порождают другие пары и первая пара погибает (1 новая пара).
  • В третьем месяце, вторая пара и две новые пары порождают в общем три новые пары, а старая вторая пара погибает (2 новые пары).

Закономерным является тот факт, что каждая пара кроликов порождает ещё две пары на протяжении жизни, а затем погибает.

Пусть популяция за месяц n будет равна F(n). В это время, только кролики которые жили в месяце n-2 являются способными к размножению и производят потомков, тогда F(n-2) пар прибавится к текущей популяции F(n-1). Таким образом общее количество пар будет равно F(n) = F(n — 1) + F(n — 2).

Формула Бине

Формула Бине выражает в явном виде значение Fn как функцию от n:

,

где  — золотое сечение. При этом и являются корнями квадратного уравнения .

Из формулы Бине следует, что для всех , Fn есть ближайшее к целое число, то есть . В частности, справедлива асимптотика .

Тождества

И более общие формулы:

  • Числа Фибоначчи представляются значениями континуант на наборе единиц: , то есть
, а также ,
где матрицы имеют размер , i — мнимая единица.

Свойства

  • Наибольший общий делитель двух чисел Фибоначчи равен числу Фибоначчи с индексом, равным наибольшему общему делителю индексов, т. е. (Fm,Fn) = F(m,n). Следствия:
    • Fm делится на Fn тогда и только тогда, когда m делится на n (за исключением n = 2). В частности, Fm делится на F3 = 2 (то есть является чётным) только для m = 3k; Fm делится на F4 = 3 только для m = 4k; Fm делится на F5 = 5 только для m = 5k и т. д.
    • Fm может быть простым только для простых m (с единственным исключением m = 4) (например, число 233 простое, и индекс его, равный 13, также прост). Обратное не верно, первый контрпример — . Неизвестно, бесконечно ли множество чисел Фибоначчи, являющихся простыми.
.
  • В 1964 Дж. Кон (J. H. E. Cohn) доказал, что единственными точными квадратами среди чисел Фибоначчи являются числа Фибоначчи с индексами 0, 1, 2, 12: F0 = 02 = 0, F1 = 12 = 1, F2 = 12 = 1, F12 = 122 = 144. При этом для n=0,1,12 верно утверждение Fn = n2.
  • Множество чисел Фибоначчи совпадает с множеством положительных значений многочлена
        z(x,y) = 2xy4 + x2y3 − 2x3y2y5x4y + 2y,
    на множестве неотрицательных целых чисел x и y [2].
  • Произведение и частное двух любых различных чисел Фибоначчи, отличных от единицы, никогда не является числом Фибоначчи.
  • Последние цифры чисел Фибоначчи образуют периодическую последовательность с периодом 60, последняя пара цифр чисел Фибоначчи образует последовательность с периодом 300, последние три цифры — с периодом 1500, последние четыре — с периодом 15000, последние пять — с периодом 150000 и т. д.

Вариации и обобщения

В других областях

В природе
  • Расстояния между листьями (или ветками) на стволе растения относятся примерно как числа Фибоначчи.
В культуре

См. также

Литература

Ссылки

Примечания

  1. [1] БСЭ]
  2. P. Ribenboim, The New Book of Prime Number Records, Springer, 1996, p. 193.

Wikimedia Foundation. 2010.

biograf.academic.ru

реализация и сравнение / Habr

Введение

Программистам числа Фибоначчи должны уже поднадоесть. Примеры их вычисления используются везде. Всё от того, что эти числа предоставляют простейший пример рекурсии. А ещё они являются хорошим примером динамического программирования. Но надо ли вычислять их так в реальном проекте? Не надо. Ни рекурсия, ни динамическое программирование не являются идеальными вариантами. И не замкнутая формула, использующая числа с плавающей запятой. Сейчас я расскажу, как правильно. Но сначала пройдёмся по всем известным вариантам решения.

Код предназначен для Python 3, хотя должен идти и на Python 2.

Для начала – напомню определение:

Fn= Fn-1+ Fn-2

и F1= F2=1.

Замкнутая формула

Пропустим детали, но желающие могут ознакомиться с выводом формулы. Идея в том, чтобы предположить, что есть некий x, для которого Fn = xn, а затем найти x.

что означает

сокращаем xn-2

Решаем квадратное уравнение:

Откуда и растёт «золотое сечение» ϕ=(1+√5)/2. Подставив исходные значения и проделав ещё вычисления, мы получаем:

что и используем для вычисления Fn.

from __future__ import division
import math

def fib(n):
    SQRT5 = math.sqrt(5)
    PHI = (SQRT5 + 1) / 2
    return int(PHI ** n / SQRT5 + 0.5)

Хорошее:
Быстро и просто для малых n
Плохое:
Требуются операции с плавающей запятой. Для больших n потребуется большая точность.
Злое:
Использование комплексных чисел для вычисления Fn красиво с математической точки зрения, но уродливо — с компьютерной.

Рекурсия

Самое очевидное решение, которое вы уже много раз видели – скорее всего, в качестве примера того, что такое рекурсия. Повторю его ещё раз, для полноты. В Python её можно записать в одну строку:
fib = lambda n: fib(n - 1) + fib(n - 2) if n > 2 else 1

Хорошее:
Очень простая реализация, повторяющая математическое определение
Плохое:
Экспоненциальное время выполнения. Для больших n очень медленно
Злое:
Переполнение стека

Запоминание

У решения с рекурсией есть большая проблема: пересекающиеся вычисления. Когда вызывается fib(n), то подсчитываются fib(n-1) и fib(n-2). Но когда считается fib(n-1), она снова независимо подсчитает fib(n-2) – то есть, fib(n-2) подсчитается дважды. Если продолжить рассуждения, будет видно, что fib(n-3) будет подсчитана трижды, и т.д. Слишком много пересечений.

Поэтому надо просто запоминать результаты, чтобы не подсчитывать их снова. Время и память у этого решения расходуются линейным образом. В решении я использую словарь, но можно было бы использовать и простой массив.

M = {0: 0, 1: 1}

def fib(n):
    if n in M:
        return M[n]
    M[n] = fib(n - 1) + fib(n - 2)
    return M[n]

(В Python это можно также сделать при помощи декоратора, functools.lru_cache.)

Хорошее:
Просто превратить рекурсию в решение с запоминанием. Превращает экспоненциальное время выполнение в линейное, для чего тратит больше памяти.
Плохое:
Тратит много памяти
Злое:
Возможно переполнение стека, как и у рекурсии

Динамическое программирование

После решения с запоминанием становится понятно, что нам нужны не все предыдущие результаты, а только два последних. Кроме этого, вместо того, чтобы начинать с fib(n) и идти назад, можно начать с fib(0) и идти вперёд. У следующего кода линейное время выполнение, а использование памяти – фиксированное. На практике скорость решения будет ещё выше, поскольку тут отсутствуют рекурсивные вызовы функций и связанная с этим работа. И код выглядит проще.

Это решение часто приводится в качестве примера динамического программирования.

def fib(n):
    a = 0
    b = 1
    for __ in range(n):
        a, b = b, a + b
    return a

Хорошее:
Быстро работает для малых n, простой код
Плохое:
Всё ещё линейное время выполнения
Злое:
Да особо ничего.

Матричная алгебра

И, наконец, наименее освещаемое, но наиболее правильное решение, грамотно использующее как время, так и память. Его также можно расширить на любую гомогенную линейную последовательность. Идея в использовании матриц. Достаточно просто видеть, что

А обобщение этого говорит о том, что

Два значения для x, полученных нами ранее, из которых одно представляло собою золотое сечение, являются собственными значениями матрицы. Поэтому, ещё одним способом вывода замкнутой формулы является использование матричного уравнения и линейной алгебры.

Так чем же полезна такая формулировка? Тем, что возведение в степень можно произвести за логарифмическое время. Это делается через возведения в квадрат. Суть в том, что

где первое выражение используется для чётных A, второе для нечётных. Осталось только организовать перемножения матриц, и всё готово. Получается следующий код. Я организовал рекурсивную реализацию pow, поскольку её проще понять. Итеративную версию смотрите тут.

def pow(x, n, I, mult):
    """
    Возвращает x в степени n. Предполагает, что I – это единичная матрица, которая 
    перемножается с mult, а n – положительное целое
    """
    if n == 0:
        return I
    elif n == 1:
        return x
    else:
        y = pow(x, n // 2, I, mult)
        y = mult(y, y)
        if n % 2:
            y = mult(x, y)
        return y


def identity_matrix(n):
    """Возвращает единичную матрицу n на n"""
    r = list(range(n))
    return [[1 if i == j else 0 for i in r] for j in r]


def matrix_multiply(A, B):
    BT = list(zip(*B))
    return [[sum(a * b
                 for a, b in zip(row_a, col_b))
            for col_b in BT]
            for row_a in A]


def fib(n):
    F = pow([[1, 1], [1, 0]], n, identity_matrix(2), matrix_multiply)
    return F[0][1]

Хорошее:
Фиксированный объём памяти, логарифмическое время
Плохое:
Код посложнее
Злое:
Приходится работать с матрицами, хотя они не так уж и плохи

Сравнение быстродействия

Сравнивать стоит только вариант динамического программирования и матрицы. Если сравнивать их по количеству знаков в числе n, то получится, что матричное решение линейно, а решение с динамическим программированием – экспоненциально. Практический пример – вычисление fib(10 ** 6), числа, у которого будет больше двухсот тысяч знаков.

n = 10 ** 6
Вычисляем fib_matrix: у fib(n) всего 208988 цифр, расчёт занял 0.24993 секунд.
Вычисляем fib_dynamic: у fib(n) всего 208988 цифр, расчёт занял 11.83377 секунд.


Теоретические замечания

Не напрямую касаясь приведённого выше кода, данное замечание всё-таки имеет определённый интерес. Рассмотрим следующий граф:

Подсчитаем количество путей длины n от A до B. Например, для n = 1 у нас есть один путь, 1. Для n = 2 у нас опять есть один путь, 01. Для n = 3 у нас есть два пути, 001 и 101. Довольно просто можно показать, что количество путей длины n от А до В равно в точности Fn. Записав матрицу смежности для графа, мы получим такую же матрицу, которая была описана выше. Это известный результат из теории графов, что при заданной матрице смежности А, вхождения в Аn — это количество путей длины n в графе (одна из задач, упоминавшихся в фильме «Умница Уилл Хантинг»).

Почему на рёбрах стоят такие обозначения? Оказывается, что при рассмотрении бесконечной последовательности символов на бесконечной в обе стороны последовательности путей на графе, вы получите нечто под названием «подсдвиги конечного типа», представляющее собой тип системы символической динамики. Конкретно этот подсдвиг конечного типа известен, как «сдвиг золотого сечения», и задаётся набором «запрещённых слов» {11}. Иными словами, мы получим бесконечные в обе стороны двоичные последовательности и никакие пары из них не будут смежными. Топологическая энтропия этой динамической системы равна золотому сечению ϕ. Интересно, как это число периодически появляется в разных областях математики.

habr.com

Фибоначчи повсюду! — Мастерок.жж.рф — LiveJournal

Итак, мы выяснили с вами Кто такой Фибоначчи, а теперь давайте рассмотрим вот такой феномен.

Оказывается Фибоначчи повсюду!

На самом деле эти числа были известны задолго до Фибоначчи ещё в древней Индии, где они использовались в метрическом стихосложении.

Леонардо Фибоначчи первым ввёл эту числовую последовательность в западноевропейской математической науке в своей важной книге «Liber Abaci» («Книга абака») в 1202 году. Он использовал эту последовательность чисел, когда пытался объяснить рост популяции кроликов.

Фибоначчи рассматривает гипотетическую ситуацию, когда в поле появляется пара кроликов. Они спариваются в конце месяца и в конце второго месяца самка производит еще одну пару. Кролики никогда не умирают, спариваются ровно через месяц, и самки всегда производят пару (один самец, одна самка). Вопрос, который поставил Фибоначчи был следующим: сколько пар будет через один год? Если посчитать, то окажется, что количество пар в конце N-го месяца равно Fn или N-му числу Фибоначчи. Таким образом, количество пар кроликов через 12 месяцев будет F12 или 144.

Числа Фибоначчи и золотое сечение

Как известно, последовательность Фибоначчи начинается с 1 и 1, после чего каждое новое число является результатом сложения двух предыдущих чисел:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Если разделить два последовательных числа в этом ряду, например 144/89, в конечном итоге получится число 1,618, которое называется «Золотое число» или «Золотое сечение».


Последовательное приближение соотношения двух соседних чисел ряда Фибоначчи к Золотому сечению.

Пропорция золотого сечения считается эстетически приятной и из-за этого многие художники и архитекторы, в том числе Сальвадор Дали и Ле Корбюзье использовали её в своих работах.
Последовательность Фибоначчи и Золотое сечение тесно взаимосвязаны. Отношение последовательных чисел Фибоначчи сходится и приближается к золотому сечению, а выражение замкнутой формулы для последовательности Фибоначчи включает Золотое сечение.


Золотой прямоугольник (розовый) с длинной стороной a и короткой стороной b, и находящийся рядом с ним квадрат со стороной длиной a, создадут подобный золотой прямоугольник с длинной стороной а + b и короткой стороной a. Это изобажение иллюстрирует взаимосвязь отношений (a+b)/a = a/b.

Спираль Фибоначчи или золотая спираль — это последовательность соединенных четвертей окружностей, вписанных внутри массивов квадратов со сторонами равными числам Фибоначчи. Квадраты идеально подходят друг к другу из-за природы последовательности Фибоначчи, в которой следующее число равно сумме двух перед ним (см.предыдущий рисунок). Любые два последовательных числа Фибоначчи имеют отношение, очень близкое к золотому сечению, которое составляет примерно 1.618034. Чем больше пара чисел Фибоначчи, тем ближе это приближение. Спираль и результирующий прямоугольник называются золотым прямоугольником.

Почему эта последовательность настолько уникальна
Числа Фибоначчи описывают различные явления в искусстве, музыке и природе. Числа спиралей на большинстве шишек и ананасах равны числам Фибоначчи. Расположение листьев и ветвей на стеблях многих растений соответствуют числам Фибоначчи. На пианино количество белых (8) клавиш и черных (5) клавиш в каждой октаве (13) являются числами Фибоначчи. Длины и ширины много прямоугольных предметов, таких как учетные карточки, окна, игральные карты и пр. соответствуют последовательным числам ряда Фибоначчи.

Числа Фибоначчи в природе

Подсолнухи являются отличными примерами последовательности Фибоначчи, потому что семена в центре цветка организованы в два набора спиралей — короткие, идущие по часовой стрелке от центра, и более длинные — против часовой стрелки. Если считать спирали последовательно, то, видимо, всегда найдутся числа Фибоначчи.

Последовательность Фибоначчи можно также увидеть в форме или разделении ветвей дерева. Основной ствол будет расти до тех пор, пока он не создаст ветвь, которая создает две точки роста. Затем один из новых стеблей разветвляется на два, в то время как другой находится в состоянии покоя. Такая картина ветвления повторяется для каждого из новых стеблей. Корневая система и даже водоросли также демонстрируют эту закономерность.

Вот еще несколько примеров, где вы можете найти спираль Фибоначчи в природе.

Неудивительно, что спиральные галактики также следуют знакомой схеме Фибоначчи. Млечный Путь имеет несколько спиральных рукавов, каждый из которых представляет логарифмическую спираль около 12 градусов.

Числа Фибоначчи в теле человека

Есть много примеров соотношений частей тела человека на основе последовательности Фибоначчи, например рука и, в частности, кости пальца.

Каждая кость указательного пальца, от кончика до основания запястья, больше предыдущей примерно на коэффициент Фибоначчи 1,618, что соответствует числам Фибоначчи 2, 3, 5 и 8.

Числа Фибоначчи в биржевой торговле

Последовательность Фибоначчи является инструментом технического анализа, используемым профессиональными трейдерами в сочетании с другими инструментами для расчета прогноза потенциального конца коррекции, принимая процент от предыдущего движения.

Считается, что во время мощного рыночного движения, цены могут откатываться на 23,6% (это соответствует отношению числа ряда Фибоначчи на позиции N к числу на позиции N+3), 38,2% (соответствует отношению числа ряда Фибоначчи на позиции N к числу на позиции N+2) или 50% (половина). Эти уровни коррекции Фибоначчи считаются «нормальными». Если же цена падает на 61,2% (отношение двух соседних чисел ряда Фибоначчи — позиции N и N+1) и более, то это серьезный сигнал вероятного разворота тренда.

Числа Фибоначчи в фотографии и искусстве

В фотографии сетка фи (phi) является интерполяцией спирали Фибоначчи и в наши дни считается фундаментальным методом для создания приятной композиции в кадре. Цель состоит в том, чтобы выровнять объект по линиям, созданным спиралью, или использовать её в качестве разделителя для создания правильного ощущения кадра.


Сетка фи (красные линии) и спираль Фиббоначи в кадре.

Имеется много примеров, когда последовательность Фибоначчи появляется вокруг нас, и мы не обращаем внимания на это математическое чудо, которое кажется таинственным фактором, приносящим универсальную форму гармонии элементам математического музыкального искусства природы.

Может именно из-за этого Дональд Трамп был избран президентом? (шутка):

И еще немного фундаментального числа!

[источники]Источники:
View story at Medium.com

Это копия статьи, находящейся по адресу http://masterokblog.ru/?p=47272.

masterok.livejournal.com

Фибоначчи — Википедия

Леона́рдо Пиза́нский (лат. Leonardus Pisanus, итал. Leonardo Pisano, около 1170 года, Пиза — около 1250 года, там же) — первый крупный математик средневековой Европы. Наиболее известен под прозвищем Фибона́ччи.

Отец Фибоначчи по торговым делам часто бывал в Алжире, и Леонардо изучал там математику у арабских учителей. Позже Фибоначчи посетил Египет, Сирию, Византию, Сицилию. Он ознакомился с достижениями античных и индийских математиков в арабском переводе. На основе усвоенных им знаний Фибоначчи написал ряд математических трактатов, представляющих собой выдающееся явление средневековой западноевропейской науки. Труд Леонардо Фибоначчи «Книга абака» способствовал распространению в Европе позиционной системы счисления, более удобной для вычислений, чем римская нотация; в этой книге были подробно исследованы возможности применения индийских цифр, ранее остававшиеся неясными, и даны примеры решения практических задач, в частности, связанных с торговым делом[1]. Позиционная система приобрела в Европе популярность в эпоху Возрождения[2].

Леонардо Пизанский никогда не называл себя Фибоначчи; этот псевдоним был дан ему позднее, предположительно Гийомом Либри (Guglielmo Libri Carucci dalla Sommaja) в 1838 году. Слово Fibonacci — сокращение от двух слов «filius Bonacci», появившихся на обложке «Книги абака»; они могли означать либо «сын Боначчо», либо, если интерпретировать слово Боначчи как фамилию, «сын Боначчи». Согласно третьей версии, само слово Боначчи нужно тоже понимать как прозвище, означавшее «удачливый». Сам он обычно подписывался Боначчи; иногда он использовал также имя Леонардо Биголло — слово bigollo на тосканском наречии значило «странник», а также «бездельник»[3][4].

Фибоначчи родился в итальянском городе Пиза, предположительно в 1170-е годы (в некоторых источниках стоит 1180 год). Его отец, Гильермо, был торговцем. В 1192 году он был назначен представлять пизанскую торговую колонию в Северной Африке и часто бывал в Беджаи, Алжир. По желанию отца, который хотел, чтобы Леонардо стал хорошим торговцем, он переехал в Алжир и изучал там математику (искусство вычислений) у арабских учителей. Позже Фибоначчи посетил Египет, Сирию, Византию, Сицилию[5].

В 1200 году Леонардо вернулся в Пизу и принялся за написание своего первого труда «Книги абака»[5]. В то время в Европе о позиционной системе счисления и арабских цифрах знали очень немногие. В своей книге Фибоначчи всячески поддерживал индийские приёмы вычисления и методы[6]. По словам историка математики А. П. Юшкевича, «„Книга абака“ резко возвышается над европейской арифметико-алгебраической литературой XII—XIV веков разнообразием и силой методов, богатством задач, доказательностью изложения… Последующие математики широко черпали из неё как задачи, так и приёмы их решения». По первой книге многие поколения европейских математиков изучали индийскую позиционную систему счисления[6].

Книга заинтересовала императора Фридриха II и его придворных, среди которых был астролог Микаель Скотус (Michael Scotus), философ Теодорус Физикус (Theodorus Physicus) и Доминикус Хиспанус (Dominicus Hispanus). Последний предложил, чтобы Леонардо пригласили ко двору в одно из посещений императором Пизы около 1225 года, где ему задавал задачи Иоган Палермский, ещё один придворный философ Фридриха II. Некоторые из этих задач появились в последующих работах Фибоначчи[4][7]. Благодаря хорошему образованию Леонардо удалось обратить на себя внимание императора Фридриха II во время математических турниров. Впоследствии Леонардо пользовался покровительством императора[8].

Несколько лет Фибоначчи жил при дворе императора. К этому времени относится его работа «Книга квадратов», написанная в 1225 году. Книга посвящена диофантовым уравнениям второй степени и ставит Фибоначчи в один ряд с такими учёными, развивавшими теорию чисел, как Диофант и Ферма[7]. Единственное упоминание о Фибоначчи после 1228 года относится к 1240 году, когда ему в Пизанской республике была назначена пенсия за заслуги перед городом[4].

Прижизненных портретов Фибоначчи не сохранилось, а существующие являются современными представлениями о нём. Леонардо Пизанский не оставил практически никаких автобиографических сведений; единственным[9] исключением является второй абзац «Книги абака», где Фибоначчи излагает причины, побудившие его написать книгу:

Когда отцу моему была назначена должность таможенного чиновника, заведовавшего в Беджайе делами стекавшихся к нему пизанских торговцев, он в отрочестве моём призвал меня к себе и предложил несколько дней учиться счётному искусству, сулившему немало удобств и выгод для моего будущего. Наученный благодаря мастерству учителей основам индийского счёта, я приобрёл большую любовь к этому искусству и заодно узнал, что кое-что об этом предмете известно среди египтян, сирийцев, греков, сицилийцев и провансальцев, развивших свои методы. Позже, во время торговых путешествий по всем этим краям, я посвятил много труда подробному изучению их методов и, кроме того, овладел искусством научного спора. Однако по сравнению с методом индийцев все построения этих людей, включая подход алгорисмиков и учение Пифагора, кажутся почти заблуждениями, а потому я решил, изучив как можно внимательнее индийский метод, изложить его в пятнадцати главах настолько понятно, насколько смогу, с добавлениями от собственного разума и с кое-какими полезными примечаниями из геометрии Евклида, вставленными по ходу сочинения. Дабы пытливый читатель мог изучить индийский счёт наиболее вдумчивым образом, я сопроводил почти каждое утверждение убедительным доказательством; рассчитываю, что латинский народ отныне не будет лишён самых точных сведений об искусстве вычислений. Если же, паче чаяния, я пропустил что-то более или менее важное, а может быть, необходимое, то молю о прощении, ибо нет среди людей никого, кто был бы безгрешен или обладал способностью всё предвидеть.

Оригинальный текст (лат.)

Cum genitor meus a patria publicus scriba in duana bugee pro pisanis mercatoribus ad eam confluentibus constitutus preesset, me in pueritia mea ad se venire faciens, inspecta utilitate et commoditate futura, ibi me studio abbaci per aliquot dies stare voluit et doceri. Vbi ex mirabili magisterio in arte per novem figuras indorum introductus, scientia artis in tantum mihi pre ceteris placuit, et intellexi ad illam quod quicquid studebatur ex ea apud egyptum, syriam, greciam, siliciam, et provinciam cum suis variis modis, ad que loca negotiationis causa postea peragravi per multum studium et disputationis didici conflictum. Sed hoc totum etiam, et algorismum atque artem pictagore quasi errorem computavi respectu modi indorum. Quare, amplectens strictius ipsum modum indorum et attentius studems in eo, ex proprio sensu quedam addens et quedem etiam ex subtilitatibus euclidis geometrice artis apponens, summam huius libri, quam intelligibilius potui, in quindecim capitulis distinctam componere laboravi, fere omnia que inserui certa probatione ostendens, ut extra perfecto pre ceteris modo hanc scientiam appetentes instruantur, et gens latina de cetero, sicut hactenus, absque illa minime inveniatur. Si quid forte minus aut plus iusto vel necessario intermisi, mihi deprecor indulgeatur, cum nemo sit qui vitio careat et in omnibus undique sit circumspectus.

Однако точный смысл этого абзаца нельзя считать полностью известным, потому что его текст, как и весь латинский текст книги, дошёл до нас с ошибками, внесёнными переписчиками.[10][11]

Значительную часть усвоенных им знаний он изложил в своей «Книге абака» (Liber abaci, 1202 год; до наших дней сохранилась только дополненная рукопись 1228 года)[2]. Эта книга состоит из 15 глав и содержит почти все арифметические и алгебраические сведения того времени, изложенные с исключительной полнотой и глубиной. Первые пять глав книги посвящены арифметике целых чисел на основе десятичной нумерации. В VI и VII главе Леонардо излагает действия над обыкновенными дробями. В VIII—X главах изложены приёмы решения задач коммерческой арифметики, основанные на пропорциях. В XI главе рассмотрены задачи на смешение. В XII главе приводятся задачи на суммирование рядов — арифметической и геометрической прогрессий, ряда квадратов и, впервые в истории математики, возвратного ряда, приводящего к последовательности так называемых чисел Фибоначчи. В XIII главе излагается правило двух ложных положений и ряд других задач, приводимых к линейным уравнениям. В XIV главе Леонардо на числовых примерах разъясняет способы приближённого извлечения квадратного и кубического корней. Наконец, в XV главе собран ряд задач на применение теоремы Пифагора и большое число примеров на квадратные уравнения. Леонардо впервые в Европе использовал отрицательные числа, которые рассматривал как долг[6]. Книга посвящена Микаелю Скотусу[4].

Другая книга Фибоначчи, «Практика геометрии» (Practica geometriae, 1220 год), состоит из семи частей и содержит разнообразные теоремы с доказательствами, относящиеся к измерительным методам. Наряду с классическими результатами Фибоначчи приводит свои собственные — например, первое доказательство того, что три медианы треугольника пересекаются в одной точке (Архимеду этот факт был известен, но если его доказательство и существовало, до нас оно не дошло). Среди землемерных приёмов, которым посвящён последний раздел книги, — использование определённым образом размеченного квадрата для определения расстояний и высот. Для определения числа π{\displaystyle \pi } Фибоначчи использует периметры вписанного и описанного 96-угольника, что приводит его к значению 3,1418{\displaystyle 3,1418}[6]. Книга была посвящена Доминикусу Хиспанусу[4]. В 1915 году Р. С. Арчибальд занимался восстановлением утерянной работы Евклида о делении фигур, базируясь на «Практике геометрии» Фибоначчи и французском переводе арабской версии[10].

В трактате «Цветок» (Flos, 1225 год) Фибоначчи исследовал кубическое уравнение x3+2×2+10x=20{\displaystyle x^{3}+2x^{2}+10x=20}, предложенное ему Иоанном Палермским на математическом состязании при дворе императора Фридриха II[6]. Сам Иоанн Палермский почти наверняка заимствовал это уравнение из трактата Омара Хайяма «О доказательствах задач алгебры», где оно приводится как пример одного из видов в классификации кубических уравнений. Леонардо Пизанский исследовал это уравнение, показав, что его корень не может быть рациональным или же иметь вид одной из квадратичных иррациональностей, встречающихся в X книге Начал Евклида, а затем нашёл приближённое значение корня в шестидесятеричных дробях, равное 1;22,07,42,33,04,40[7], не указывая, однако, способа своего решения[4].

«Книга квадратов» (Liber quadratorum, 1225 год) содержит ряд задач на решение неопределённых квадратных уравнений. Фибоначчи работал над поиском чисел, которые, будучи добавленными к квадратному числу, вновь дадут квадратное число. Он отметил, что числа x2+y2{\displaystyle x^{2}+y^{2}} и x2−y2{\displaystyle x^{2}-y^{2}} не могут быть квадратными одновременно[7], а также использовал для поиска квадратных чисел формулу x2+(2x+1)=(x+1)2{\displaystyle x^{2}+(2x+1)=(x+1)^{2}}[4]. В одной из задач книги, также первоначально предложенной Иоанном Палермским, требовалось найти рациональное квадратное число, которое, будучи увеличено или уменьшено на 5, вновь даёт рациональные квадратные числа[6].

Среди не дошедших до нас произведений Фибоначчи трактат Di minor guisa по коммерческой арифметике, а также комментарии к книге X «Начал» Евклида[4].

Оставаясь верным математическим турнирам, основную роль в своих книгах Фибоначчи отводит задачам, их решениям и комментариям. Задачи на турниры предлагал как сам Фибоначчи, так и его соперник, придворный философ Фридриха II Иоган Палермский[8]. Задачи Фибоначчи, как и их аналоги, продолжали использовать в различных математических учебниках несколько столетий. Их можно встретить в «Сумме арифметики» Пачиоли (1494), в «Приятных и занимательных задачах» Баше де Мизириака (1612), в «Арифметике» Магницкого (1703), в «Алгебре» Эйлера (1768)[2].

Задача о размножении кроликов[править | править код]

В место, огороженное со всех сторон стеной, поместили пару кроликов, природа которых такова, что любая пара кроликов производит на свет другую пару каждый месяц, начиная со второго месяца своего существования. Сколько пар кроликов будет через год? (Ответ: 233 пары). Для поиска ответа используется рекуррентная числовая последовательность 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, … (по ней составлена последовательность A000045 в OEIS; отличие в том, что вторая последовательность начинается с нуля и единицы, а не с единицы и двойки), в которой каждое последующее число равно сумме двух предыдущих; ответом, в соответствии с условиями задачи, является тринадцатый член (завершение каждого месяца — это перескок к следующему члену последовательности; текущий член последовательности перед началом опыта — это первый; всего месяцев двенадцать). В честь учёного она носит название чисел Фибоначчи. Числа Фибоначчи нашли своё применение во многих областях математики. Одним из важных свойств последовательности является тот факт, что предел отношения an+1{\displaystyle a_{n+1}} к an{\displaystyle a_{n}} равен золотому сечению[2]. Наглядно формирование последовательности можно показать следующим образом:

1: 1 + 1 = 2
2:     1 + 2 = 3
3:         2 + 3 = 5
4:             3 + 5 = 8
5:                 5 + 8 = 13
6:                     8 + 13 = 21
7:                         13 + 21 = 34
8:                              21 + 34 = 55
9:                                   34 + 55 = 89
...                                           и т. д.

Задачи о гирях[править | править код]

Задача о выборе наилучшей системы гирь для взвешивания на рычажных весах[12][13] впервые была сформулирована именно Фибоначчи. Леонардо Пизанский предлагает два варианта задачи:

  • Простой вариант: требуется найти пять гирь, с помощью которых можно найти все веса меньше 30, при этом гири можно класть только на одну чашу весов (Ответ: 1, 2, 4, 8, 16). Решение строится в двоичной системе счисления[2].
  • Сложный вариант: требуется найти наименьшее число гирь, с помощью которого можно взвесить все веса меньше заданного (Ответ: 1, 3, 9, 27, 81,…). Решение строится в системе счисления по основанию три[2] и в общем случае представляет собой последовательность A000244 в OEIS.

Задачи по теории чисел[править | править код]

Кроме задачи о кроликах, Фибоначчи предлагал ряд других задач по теории чисел[10]:

  • Найти число, которое делится на 7 и даёт в остатке единицу при делении на 2, 3, 4, 5 и 6; (Ответ: 301)
  • Найти число, произведение которого с семёркой даёт остатки 1, 2, 3, 4, 5 при делении на 2, 3, 4, 5, 6, соответственно;
  • Найти квадратное число (то есть число, равное квадрату целого числа), которое при увеличении или уменьшении на 5 давало бы квадратное число.

Некоторые другие задачи[править | править код]

  • Найти число, 19/20 которого равно квадрату самого числа. (Ответ: 19/20)[2].
  • Сплав из 30 весовых частей состоит из трёх металлов: первый металл достоинством по три монеты на одну часть, второй металл по две монеты на одну часть, а у третьего металла каждые две части стоят по одной монете; стоимость всего сплава 30 монет. Сколько частей каждого металла содержит сплав? (Ответ: 3 части первого металла, 5 частей второго металла, 22 части третьего). В таких терминах Фибоначчи переформулировал известную задачу о птицах, в которой были использованы те же самые числа (30 птиц трёх разных видов стоят 30 монет, по заданным ценам найти количество птиц каждого вида)[6].
  • «Шуточная задача о семи старухах», которые шли в Рим, и у каждой было по семь мулов, на каждом из которых по семь мешков, в каждом из которых по семь хлебов, в каждом из которых по семь ножей, каждый из которых в семи ножнах. Нужно найти общее число предметов. Эта задача обошла много стран, первое известное упоминание о ней было ещё в Древнем Египте в папирусе Ахмеса. (Ответ: 137 256)[2][6].
Памятник Фибоначчи в Пизе

В XIX веке в Пизе был поставлен памятник учёному. Ранее статуя стояла в Giardino Scotto, а после того, как в 1978 году Франк Джонсон нарисовал портрет Фибоначчи с этой статуи, она была перенесена на кладбище Кампосанто, расположенном в Пизе на Пьяцца деи Мираколи.

Именем Фибоначчи названы улицы в Пизе (Lungarno Fibonacci) и во Флоренции (Via Fibonacci). Кроме того, имя Фибоначчи носит ассоциация Fibonacci Association[14] и издаваемый ею научный журнал Fibonacci Quarterly[15], посвящённые числам Фибоначчи, проект Евросоюза в сфере образования[16], а также другие программы[10].

При покровительстве императора Леонардо Пизанский написал несколько книг[3][4][8]:

  • «Книга абака» (Liber abaci), 1202 год, дополнена в 1228 году;
  • «Практика геометрии» (Practica geometriae), 1220 год;
  • «Цветок» (Flos) 1225 год;
  • «Книга квадратов» (Liber quadratorum), 1225 год;
  • Di minor guisa, утеряно;
  • Комментарии к книге X «Начал» Евклида, утеряно;
  • Письмо Теодорусу, 1225 год.
  1. N. Ambrosetti. L’eredità arabo-islamica nelle scienze e nelle arti del calcolo dell’Europa. — LED Edizioni Universitarie, 2008. — С. 220—221.
  2. 1 2 3 4 5 6 7 8 Карпушина Н. «Liber abaci» Леонардо Фибоначчи, Математика в школе, № 4, 2008.
  3. 1 2 A brief biographical sketch of Fibonacci, his life, times and mathematical achievements.
  4. 1 2 3 4 5 6 7 8 9 Leonardo Pisano Fibonacci
  5. 1 2 R.Knott, D.A.Quinney and PASS Maths The life and numbers of Fibonacci
  6. 1 2 3 4 5 6 7 8 История математики: в 3 т. / под редакцией А. П. Юшкевича. — М.: Наука, 1970. — Т. I: С древнейших времён до начала Нового времени. — С. 260—267.
  7. 1 2 3 4 Frances Carney Gies Leonardo Pisano//Энциклопедия Британника
  8. 1 2 3 Яглом И. М. Итальянский купец Леонардо Фибоначчи и его кролики. // Квант, 1984. № 7. С. 15-17
  9. ↑ [1] Treccani, l’Enciclopedia Italiana: Fibonacci, Leonardo (detto Leonardo Pisano)
  10. 1 2 3 4 EIGHT HUNDRED YEARS YOUNG// A. F. HORADAM
  11. RICHARD E.GRIMM//THE AUTOBIOGRAPHY OF LEONARDO PISANO
  12. ↑ А. П. Стахов. Две знаменитые задачи Фибоначчи http://www.goldenmuseum.com/1001TwoProblems_rus.html Архивная копия от 16 декабря 2010 на Wayback Machine
  13. ↑ Леонардо Пизано Фибоначчи http://www.xfibo.ru/fibonachi/leonardo-pisano-fibonacci.htm Архивная копия от 8 апреля 2014 на Wayback Machine
  14. ↑ The Fibonacci Association Архивировано 8 июня 2007 года.
  15. ↑ Fibonacci Quarterly
  16. ↑ Fibonacci Project
  • Щетников А. И. К реконструкции итерационного метода решения кубических уравнений в средневековой математике. Труды третьих Колмогоровских чтений. Ярославль: Изд-во ЯГПУ, 2005, с. 332—340.
  • Glushkov S. On approximation methods of Leonardo Fibonacci. Historia Mathematica, 3, 1976, p. 291—296.
  • Sigler, L. E. Fibonacci’s Liber Abaci, Leonardo Pisano’s Book of Calculations» Springer. New York, 2002, ISBN 0-387-40737-5.

ru.wikipedia.org

Что такое Числа Фибоначчи — Узнай Что Такое

Числа Фибоначчи — это последовательность чисел: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … Следующее число можно посчитать, сложив два числа перед ним.

Т. е. 0 + 1 = 1; 1 + 1 = 2, 1 + 2 = 3; 2 + 3 = 5; 3 + 5 = 8; …

Более формальное определение ряда Фибоначчи можно показать следующим равенством:

Более длинный список последовательности чисел Фибоначчи:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811,…

Запомнить его довольно просто: нужно только помнить, что первые два числа — это 0 и 1, и начать складывать. И за этим занятием можно просидеть сутками.

«Золотое число» или «Золотое сечение»

Если разделить два последовательных числа друг на друга (например 55 разделить на 34), всегда получится приблизительно 1,618 (обозначается как Φ = 1,618, читается как «фи», это буква греческого алфавита).

1,618 называется «Золотое число» или «Золотое сечение«.

55 / 34 = 1,6176

89 / 55 = 1,61818

377 / 233 = 1,618

Использование золотого сечения для вычисления чисел Фибоначчи

Можно вычислить любое число Фибоначчи, используя золотое сечение следующими способами

Формулой

Например, можно попробовать посчитать для n = 10 (внимание, это будет одиннадцатое число в ряду!)

Получился такой ответ:

Умножением предыдущего числа на золотое сечение

Этот способ работает для чисел выше 1. Можно рассчитать число Фибоначчи, умножив предыдущее число на золотое сечение (1,618), а затем округлив полученный результат.

Например:

13 x 1,618 = 21,034 ≈ 21

55 x 1,618 = 88,99 ≈ 89

377 x 1,618 = 609,986 ≈ 610

Золотая спираль Фибоначчи

Это спираль, которая выглядит следующим образом:

Числа Фибоначчи — последовательность чисел: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Как можно видеть на изображении, тут представлен числовой ряд Фибоначчи как спираль. Она начинается в центре с двух квадратов 1×1, за ними следуют квадраты 2×2, 3×3, 5×5 и так далее.

Числа Фибоначчи в природе

Фотография «Алоэ многолистное» (Aloe polyphylla), на фото можно увидеть спираль Фибоначчи в природе. «Спираль ракушки», фотограф Muffett68 Heidi; ещё один пример спирали Фибоначчи в природе.

В этом видео «ЧИСЛА ФИБОНАЧЧИ УДИВИТЕЛЬНАЯ ЗАКОНОМЕРНОСТЬ» ещё больше примеров чисел Фибоначчи в природе и в мире вокруг нас.

Числа Фибоначчи в архитектуре

В строениях древней архитектуры мы зачастую можем ощущать некую гармонию пропорций. И это неслучайно, ведь на протяжении многих веков архитекторы пользуются этим магическим числом золотого сечения. Число 1,618 можно заметить и в творчестве средневековья, и в современных произведениях архитектурного искусства.

Здание SOMISA в Буэнос-Айресе, Аргентина; архитектор Марио Роберто Альварес, окончание строительства 1977 г.

Пример использования золотого числа в древней архитектуре:

Пантеон в Париже

Любопытные факты

Давайте ещё раз посмотрим на последовательность чисел Фибоначчи:

n

01234567891011121314151617
011235813213455891442333776109871597

Каждое n-е число кратно

Если внимательно посмотреть на цифры, можно рассмотреть удивительную закономерность:

  • посмотрите на , а потом взгляните на последующие элементы: 6-ой, 9-ый, 12-ый… Каждый третий элемент делится на 2!
  • посмотрите на , а потом взгляните на последующие элементы: 8-ой, 12-ый, 16-ый… Каждый четвёртый элемент делится на 3!
  • посмотрите на , а потом взгляните на последующие элементы: 10-ый, 15-ый… Каждый пятый элемент делится на 5!

Первые 6 цифр Фибоначчи — 1/89

Если посчитать на калькуляторе 1 : 89 будет ответ 0,011235955… Заметили, что первые 6 цифр после запятой — ряд Фибоначчи?

День Фибоначчи 23/11

День Фибоначчи — 23 ноября (11/23; в американском формате дат месяц идёт первым, а день вторым), так как в нём присутствуют цифры «1, 1, 2, 3», которые являются частью последовательности. 23 ноября можно всех поздравлять с Днём Фибоначчи!

Смотрите также значения Числа Пи и Экспоненты.

www.uznaychtotakoe.ru

Числа Фибоначчи Википедия

Черепица с квадратами, длина сторон которых является последовательными числами Фибоначчи: 1, 1, 2, 3, 5, 8, 13 и 21. Спираль Фибоначчи: приближение золотой спирали, созданной путём рисования круговых дуг, соединяющих противоположные углы квадратов в мозаике Фибоначчи;[1] (см. предыдущее изображение)

Чи́сла Фибона́ччи (иногда пишут Фибона́чи[2]) — элементы числовой последовательности

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, … (последовательность A000045 в OEIS),

в которой первые два числа равны либо 1 и 1, либо 0 и 1, а каждое последующее число равно сумме двух предыдущих чисел[3]. Названы в честь средневекового математика Леонардо Пизанского (известного как Фибоначчи)[4].

Более формально, последовательность чисел Фибоначчи {Fn}{\displaystyle \{F_{n}\}} задаётся линейным рекуррентным соотношением:

F0=0,F1=1,Fn=Fn−1+Fn−2, n⩾2, n∈Z.{\displaystyle F_{0}=0,\quad F_{1}=1,\quad F_{n}=F_{n-1}+F_{n-2},\ n\geqslant 2,\ n\in \mathbb {Z} .}

В некоторых книгах, особенно в старых, F0{\displaystyle F_{0}}, равное нулю опускается, и последовательность Фибоначчи начинается с F1=F2=1{\displaystyle F_{1}=F_{2}=1}[6].

Иногда числа Фибоначчи рассматривают и для отрицательных значений n{\displaystyle n}, как двусторонне бесконечную последовательность, удовлетворяющую тому же рекуррентному соотношению. При этом члены с отрицательными индексами легко получить с помощью эквивалентной формулы «назад»: Fn=Fn+2−Fn+1{\displaystyle F_{n}=F_{n+2}-F_{n+1}}:

n−10−9−8−7−6

ru-wiki.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *